{"title":"Design, Synthesis of Dienthiazole Derivatives, and Evaluation of Aphicidal Activity.","authors":"Yuming Ma, Yuxiao Hu, Weibin Dong, Qiangping Wang, Jinyan Wang, Wenjun Wu, Baojun Shi","doi":"10.1021/acs.jafc.4c06060","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen-containing heterocycles have attracted attention for the development of chemicals because of their many types, high physiological activities, and ease of synthesis. Aphids are severe pests found worldwide that cause serious losses in crop yield and quality every year. In this study, a series of novel dienolone thiazole derivatives were synthesized using dienolone acetate as the parent molecule. The synthesis involved bromination, Hantzsch reaction, esterification, deprotection, and other reactions. The structure of the compounds was determined using proton and carbon-13 nuclear magnetic resonance, high-resolution mass spectrometry, and single-crystal diffraction. The synthesized compounds exhibited excellent insecticidal activities against five species of aphids, including <i>Schizaphis graminum</i>, <i>Brevicoryne brassicae</i>, <i>Aphis gossypii</i>, <i>Aphis citricola</i> Van der, and <i>Myzus persicae</i>. The median lethal concentration values of the compound <b>H-13</b> for <i>S. graminum</i>, <i>B. brassicae</i>, <i>A. gossypii</i>, <i>A. citricola</i> Van der, and <i>M. persicae</i> were 8.72, 13.77, 14.17, 12.96, and 12.35 μg/mL, respectively. The mode of action test results indicated that compound <b>H-13</b> had superior contact and systemic activity against <i>M. persicae</i>, similar to the positive control flonicamid. Furthermore, a field trial showed that the control effect of compound <b>H-13</b> at 100 μg/mL concentration was comparable to that of flonicamid against <i>M. persicae</i>. The mortality was 85.6% and 90.3% after 7 and 14 days, respectively. Finally, to further explore the action mechanism of these compounds, the insecticidal activity of compounds <b>H-13</b> (strong) and <b>H-24</b> (weak) on aphid protease was determined. Compound <b>H-13</b> was found to have a significant inhibitory effect on the strong alkaline tryptase activity. Compound <b>H-13</b> might cause aphid poisoning and death by inhibiting the trypsin activity. This study provided important insights for the discovery and development of new insecticides.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":"110-118"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c06060","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen-containing heterocycles have attracted attention for the development of chemicals because of their many types, high physiological activities, and ease of synthesis. Aphids are severe pests found worldwide that cause serious losses in crop yield and quality every year. In this study, a series of novel dienolone thiazole derivatives were synthesized using dienolone acetate as the parent molecule. The synthesis involved bromination, Hantzsch reaction, esterification, deprotection, and other reactions. The structure of the compounds was determined using proton and carbon-13 nuclear magnetic resonance, high-resolution mass spectrometry, and single-crystal diffraction. The synthesized compounds exhibited excellent insecticidal activities against five species of aphids, including Schizaphis graminum, Brevicoryne brassicae, Aphis gossypii, Aphis citricola Van der, and Myzus persicae. The median lethal concentration values of the compound H-13 for S. graminum, B. brassicae, A. gossypii, A. citricola Van der, and M. persicae were 8.72, 13.77, 14.17, 12.96, and 12.35 μg/mL, respectively. The mode of action test results indicated that compound H-13 had superior contact and systemic activity against M. persicae, similar to the positive control flonicamid. Furthermore, a field trial showed that the control effect of compound H-13 at 100 μg/mL concentration was comparable to that of flonicamid against M. persicae. The mortality was 85.6% and 90.3% after 7 and 14 days, respectively. Finally, to further explore the action mechanism of these compounds, the insecticidal activity of compounds H-13 (strong) and H-24 (weak) on aphid protease was determined. Compound H-13 was found to have a significant inhibitory effect on the strong alkaline tryptase activity. Compound H-13 might cause aphid poisoning and death by inhibiting the trypsin activity. This study provided important insights for the discovery and development of new insecticides.
含氮杂环化合物因其种类多、生理活性高、易于合成等优点而受到化学领域的重视。蚜虫是世界范围内常见的严重害虫,每年都对作物产量和质量造成严重损失。本研究以醋酸二烯诺酮为母体分子合成了一系列新的二烯诺酮类噻唑衍生物。合成过程包括溴化反应、汉奇反应、酯化反应、脱保护反应等。化合物的结构是通过质子和碳-13核磁共振、高分辨率质谱和单晶衍射确定的。合成的化合物对谷裂蚜、芸苔蚜、棉蚜、citricola Van der蚜和桃蚜等5种蚜虫均有较好的杀虫活性。化合物H-13对稻瘟病菌、十字花科布氏菌、棉蚜、citricola Van der和桃蚜的致死浓度中位数分别为8.72、13.77、14.17、12.96和12.35 μg/mL。作用方式试验结果表明,化合物H-13对桃蚜具有较强的接触和全身活性,与阳性对照氟虫胺相似。此外,田间试验表明,100 μg/mL浓度的化合物H-13对桃蚜的防治效果与氟硝胺相当。7 d和14 d死亡率分别为85.6%和90.3%。最后,为了进一步探索这些化合物的作用机制,测定了化合物H-13(强)和H-24(弱)对蚜虫蛋白酶的杀虫活性。化合物H-13对强碱性胰蛋白酶活性有明显的抑制作用。化合物H-13可能通过抑制胰蛋白酶活性而引起蚜虫中毒死亡。这项研究为新杀虫剂的发现和开发提供了重要的见解。
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.