Indukuru Ramesh Reddy, Chang-Jong Kang, Sooran Kim, Bongjae Kim
{"title":"Exploring the role of nonlocal Coulomb interactions in perovskite transition metal oxides","authors":"Indukuru Ramesh Reddy, Chang-Jong Kang, Sooran Kim, Bongjae Kim","doi":"10.1038/s41524-024-01454-9","DOIUrl":null,"url":null,"abstract":"<p>Employing the density functional theory incorporating on-site and inter-site Coulomb interactions (DFT + <i>U</i> + <i>V</i>), we have investigated the role of the nonlocal interactions on the electronic structures of the transition metal oxide perovskites. Using constrained random phase approximation calculations, we derived screened Coulomb interaction parameters and revealed a competition between localization and screening effects, which results in nonmonotonic behavior with <i>d</i>-orbital occupation. We highlight the significant role and nonlocality of inter-site Coulomb interactions, <i>V</i>, comparable in magnitude to the local interaction, <i>U</i>. Our DFT + <i>U</i> + <i>V</i> results exemplarily show the representative band renormalization, and deviations from ideal extended Hubbard models due to increased hybridization between transition metal <i>d</i> and oxygen <i>p</i> orbitals as occupation increases. We further demonstrate that the inclusion of the inter-site <i>V</i> is essential for accurately reproducing the experimental magnetic order in transition metal oxides.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"31 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01454-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Employing the density functional theory incorporating on-site and inter-site Coulomb interactions (DFT + U + V), we have investigated the role of the nonlocal interactions on the electronic structures of the transition metal oxide perovskites. Using constrained random phase approximation calculations, we derived screened Coulomb interaction parameters and revealed a competition between localization and screening effects, which results in nonmonotonic behavior with d-orbital occupation. We highlight the significant role and nonlocality of inter-site Coulomb interactions, V, comparable in magnitude to the local interaction, U. Our DFT + U + V results exemplarily show the representative band renormalization, and deviations from ideal extended Hubbard models due to increased hybridization between transition metal d and oxygen p orbitals as occupation increases. We further demonstrate that the inclusion of the inter-site V is essential for accurately reproducing the experimental magnetic order in transition metal oxides.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.