{"title":"Effects of Amino Acid Mutation in Cytochrome P450 (CYP96A146) of Descurainia sophia on the Metabolism and Resistance to Tribenuron-Methyl","authors":"Jing Shen, Qian Yang, Fan Xu, Yuxin Han, Yubin Li, Mingqi Zheng","doi":"10.1021/acs.jafc.4c10217","DOIUrl":null,"url":null,"abstract":"Cytochrome P450 monooxygenases (P450s) play important roles in herbicide resistance. In this study, there are four amino acid mutations (F39Y, H163Y, S203A, and V361E) between <i>CYP96A146-S</i> and <i>CYP96A146-R</i>, which were cloned, respectively, from susceptible (S) and tribenuron-methyl-resistant (TR) <i>Descurainia sophia</i>. The Arabidopsis expressing <i>CYP96A146-S</i> or <i>CYP96A146-R</i> showed resistance to tribenuron-methyl, carfentrazone-ethyl, and oxyfluorfen, while Arabidopsis transformed with CYP96A146-R or CYP96A146 with any two or three mutations of H163Y, S203A, or V361E exhibited significantly higher resistance to tribenuron-methyl than Arabidopsis expressing CYP96A146-S. The metabolic rates of tribenuron-methyl were significantly faster in Arabidopsis expressing <i>CYP96A146-R</i> than that with <i>CYP96A146-S</i>. The molecular dynamics simulation demonstrated that amino acid mutations did not affect the domain of the HEM ring, which could significantly enhance the volume of the catalytic pocket in P450 (CYP96A146), thereby increasing the collision rate between the catalytic pocket and tribenuron-methyl. Hence, the amino acid mutations may be one of the mechanisms underlying P450-mediated herbicide resistance.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"54 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c10217","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytochrome P450 monooxygenases (P450s) play important roles in herbicide resistance. In this study, there are four amino acid mutations (F39Y, H163Y, S203A, and V361E) between CYP96A146-S and CYP96A146-R, which were cloned, respectively, from susceptible (S) and tribenuron-methyl-resistant (TR) Descurainia sophia. The Arabidopsis expressing CYP96A146-S or CYP96A146-R showed resistance to tribenuron-methyl, carfentrazone-ethyl, and oxyfluorfen, while Arabidopsis transformed with CYP96A146-R or CYP96A146 with any two or three mutations of H163Y, S203A, or V361E exhibited significantly higher resistance to tribenuron-methyl than Arabidopsis expressing CYP96A146-S. The metabolic rates of tribenuron-methyl were significantly faster in Arabidopsis expressing CYP96A146-R than that with CYP96A146-S. The molecular dynamics simulation demonstrated that amino acid mutations did not affect the domain of the HEM ring, which could significantly enhance the volume of the catalytic pocket in P450 (CYP96A146), thereby increasing the collision rate between the catalytic pocket and tribenuron-methyl. Hence, the amino acid mutations may be one of the mechanisms underlying P450-mediated herbicide resistance.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.