A digital servo for ultra-stable laser frequency stabilization.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Zhengtao Liu, Yu Wang, Wenchao Ji, Yi Hu, Xingyang Cui, Xiao Jiang, Changqing Feng, Shubin Liu
{"title":"A digital servo for ultra-stable laser frequency stabilization.","authors":"Zhengtao Liu, Yu Wang, Wenchao Ji, Yi Hu, Xingyang Cui, Xiao Jiang, Changqing Feng, Shubin Liu","doi":"10.1063/5.0226906","DOIUrl":null,"url":null,"abstract":"<p><p>We present a fully digital servo optimized for ultra-stable laser frequency stabilization. Experiments such as optical clock experiments can achieve high laser frequency stability, imposing high bandwidth, high precision, and low noise requirements on servo systems. The laser system utilizes the Pound-Drever-Hall method, employing an ultra-stable cavity to generate an error signal for servo input. The input is separated into two independent channels, with one channel featuring high feedback bandwidth and the other channel featuring high gain in the low-frequency domain. The process is fully digitized using field-programmable gate arrays with custom-made infinite impulse response filters and proportional-integral-derivative algorithms. Thanks to the low latency of 120.5 ns and low input noise of 3.22 × 10-12 V2/Hz@1 Hz, our digital servo can easily lock an external-cavity diode laser to a typical ultra-low expansion ultra-stable cavity. The laser system has a fractional frequency stability of 10-16@1s, with the servo electrical noise contributing only 5.54 × 10-18@1s.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226906","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

We present a fully digital servo optimized for ultra-stable laser frequency stabilization. Experiments such as optical clock experiments can achieve high laser frequency stability, imposing high bandwidth, high precision, and low noise requirements on servo systems. The laser system utilizes the Pound-Drever-Hall method, employing an ultra-stable cavity to generate an error signal for servo input. The input is separated into two independent channels, with one channel featuring high feedback bandwidth and the other channel featuring high gain in the low-frequency domain. The process is fully digitized using field-programmable gate arrays with custom-made infinite impulse response filters and proportional-integral-derivative algorithms. Thanks to the low latency of 120.5 ns and low input noise of 3.22 × 10-12 V2/Hz@1 Hz, our digital servo can easily lock an external-cavity diode laser to a typical ultra-low expansion ultra-stable cavity. The laser system has a fractional frequency stability of 10-16@1s, with the servo electrical noise contributing only 5.54 × 10-18@1s.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信