The combined effects of climate, soil, and rhizospheric microorganisms determine the quality and suitable production zones of Stellaria dichotoma L. var. lanceolata Bge. in China

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zhenkai Li, Yang Yang, Lu Feng, Haishan Li, Zhiheng Dai, Tianle Cheng, Shuying Liu, Ling Ma, Xin Luo, Yukun Wang, Li Peng, Hong Wu
{"title":"The combined effects of climate, soil, and rhizospheric microorganisms determine the quality and suitable production zones of Stellaria dichotoma L. var. lanceolata Bge. in China","authors":"Zhenkai Li,&nbsp;Yang Yang,&nbsp;Lu Feng,&nbsp;Haishan Li,&nbsp;Zhiheng Dai,&nbsp;Tianle Cheng,&nbsp;Shuying Liu,&nbsp;Ling Ma,&nbsp;Xin Luo,&nbsp;Yukun Wang,&nbsp;Li Peng,&nbsp;Hong Wu","doi":"10.1186/s40538-024-00697-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><i>Stellaria dichotoma</i> L. var. <i>lanceolata</i> Bge. (<i>S. lanceolata</i>) is a psammophytic plant endemic to the northwest region of China and has now developed into a cultivated economic crop. It is the original plant species used in traditional Chinese medicine as Yinchaihu. Recently, the lack of scientifically guided production zoning has exacerbated the arbitrary introduction and expansion of <i>S. lanceolata</i> cultivation, resulting in significant changes to its habitat and quality.</p><h3>Methods</h3><p>This study utilizes distribution data of wild <i>S. lanceolata</i> along with data from 33 environmental factors to analyze the primary habitat factors influencing the species' distribution using the Maxent model, simulating both current and future suitable production zones. Additionally, amplicon sequencing was employed to investigate changes in rhizospheric soil microorganisms across different cultivation sites and years. Furthermore, metabolomics, near-infrared spectroscopy, and the quantification of active ingredient content were used to assess the effects of various suitable zones on <i>S. lanceolata.</i></p><h3>Results</h3><p>The migration trends of <i>S. lanceolata</i> toward the central and eastern regions of Inner Mongolia revealed that elev, bio_4, bio_13, bio_11, and S_clay are the primary ecological and soil factors influencing suitability zoning, contributing a cumulative rate of 80.5%. The rhizosphere microbial environment shifted significantly from high to medium suitability habitats. As cultivation duration increased, the diversity of fungi and bacteria and the functional genera within the rhizosphere exhibited significant changes. Notably, there were substantial alterations in metabolic processes and substance accumulation during the transition from high to medium and low suitability zones, resulting in the identification of 281 and 370 differential metabolites, respectively. Additionally, the near-infrared spectral characteristics and active ingredient content of <i>S. lanceolata</i> in high suitability zones displayed distinct specificity. In particular, the contents of total flavonoids (2.772 mg·g<sup>−1</sup>), dichotomines B (0.057 mg·g<sup>−1</sup>), and quercetin-3-O-β-D-glucoside (0.312 mg·g<sup>−1</sup>) were notably higher, with the overall quality score surpassing that of other suitable zones. </p><h3>Conclusion</h3><p>This study revealed the key climatic, soil, and rhizosphere microbial environmental factors influencing the quality formation of <i>S. lanceolata</i> and the selection of suitable production zones, offering guidance for sustainable development and production zone planning.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00697-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00697-4","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Stellaria dichotoma L. var. lanceolata Bge. (S. lanceolata) is a psammophytic plant endemic to the northwest region of China and has now developed into a cultivated economic crop. It is the original plant species used in traditional Chinese medicine as Yinchaihu. Recently, the lack of scientifically guided production zoning has exacerbated the arbitrary introduction and expansion of S. lanceolata cultivation, resulting in significant changes to its habitat and quality.

Methods

This study utilizes distribution data of wild S. lanceolata along with data from 33 environmental factors to analyze the primary habitat factors influencing the species' distribution using the Maxent model, simulating both current and future suitable production zones. Additionally, amplicon sequencing was employed to investigate changes in rhizospheric soil microorganisms across different cultivation sites and years. Furthermore, metabolomics, near-infrared spectroscopy, and the quantification of active ingredient content were used to assess the effects of various suitable zones on S. lanceolata.

Results

The migration trends of S. lanceolata toward the central and eastern regions of Inner Mongolia revealed that elev, bio_4, bio_13, bio_11, and S_clay are the primary ecological and soil factors influencing suitability zoning, contributing a cumulative rate of 80.5%. The rhizosphere microbial environment shifted significantly from high to medium suitability habitats. As cultivation duration increased, the diversity of fungi and bacteria and the functional genera within the rhizosphere exhibited significant changes. Notably, there were substantial alterations in metabolic processes and substance accumulation during the transition from high to medium and low suitability zones, resulting in the identification of 281 and 370 differential metabolites, respectively. Additionally, the near-infrared spectral characteristics and active ingredient content of S. lanceolata in high suitability zones displayed distinct specificity. In particular, the contents of total flavonoids (2.772 mg·g−1), dichotomines B (0.057 mg·g−1), and quercetin-3-O-β-D-glucoside (0.312 mg·g−1) were notably higher, with the overall quality score surpassing that of other suitable zones.

Conclusion

This study revealed the key climatic, soil, and rhizosphere microbial environmental factors influencing the quality formation of S. lanceolata and the selection of suitable production zones, offering guidance for sustainable development and production zone planning.

Graphical Abstract

气候、土壤和根瘤微生物的综合效应决定了中国二道黄芪的品质和适宜生产区
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信