Afef Laribi, Sylvie Bégot, Dominique Surdyk, Yacine Ait-Oumeziane, Valérie Lepiller, Philippe Désévaux, Nour El Zein, Ana Ribeiro De Carvalho
{"title":"Experimental study of the influence of the vents on the thermal performance of a Trombe wall","authors":"Afef Laribi, Sylvie Bégot, Dominique Surdyk, Yacine Ait-Oumeziane, Valérie Lepiller, Philippe Désévaux, Nour El Zein, Ana Ribeiro De Carvalho","doi":"10.1016/j.enbuild.2024.115176","DOIUrl":null,"url":null,"abstract":"This article presents an experimental study of a Trombe wall made of cellular concrete, associated with different vent configurations. The experiments were conducted in the laboratory using a Trombe wall connected to an adjacent room, under conditions of an intermediate season. The measurements focus on temperature and heat flux measured in various areas of the facility. Five configurations are compared: one with the vents fully open, three with reduced vent surface areas and different positions, and one with the vents fully closed. The impact of the number and position of the vents on the thermal behavior and efficiency of the Trombe wall is measured and analyzed. The results indicate that only the configuration with the vents fully closed exhibits a very different thermal behavior compared to the other configurations. In this configuration, the insulating properties of cellular concrete result in a minimal temperature increase in the room, making it an appropriate solution for maintaining occupant comfort even during summer conditions. Configurations with partially closed vents show generally similar behavior, except when there are significant reductions in vent surface. To effectively limit convective transfer with partial vent closure, a substantial reduction in vent surface (at least 60%) is required.","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"23 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enbuild.2024.115176","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an experimental study of a Trombe wall made of cellular concrete, associated with different vent configurations. The experiments were conducted in the laboratory using a Trombe wall connected to an adjacent room, under conditions of an intermediate season. The measurements focus on temperature and heat flux measured in various areas of the facility. Five configurations are compared: one with the vents fully open, three with reduced vent surface areas and different positions, and one with the vents fully closed. The impact of the number and position of the vents on the thermal behavior and efficiency of the Trombe wall is measured and analyzed. The results indicate that only the configuration with the vents fully closed exhibits a very different thermal behavior compared to the other configurations. In this configuration, the insulating properties of cellular concrete result in a minimal temperature increase in the room, making it an appropriate solution for maintaining occupant comfort even during summer conditions. Configurations with partially closed vents show generally similar behavior, except when there are significant reductions in vent surface. To effectively limit convective transfer with partial vent closure, a substantial reduction in vent surface (at least 60%) is required.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.