Anthocyanin-rich black wheat as a functional food for managing type 2 diabetes mellitus: a study on high fat diet-streptozotocin-induced diabetic rats.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2024-12-17 DOI:10.1039/d4fo05065g
Vandita Tiwari, Akhil Kamboj, Bhawna Sheoran, Era Chaudhary, Mona Yadav, Anita Kumari, Meena Krishania, Usman Ali, Apoorv Tiwari, Monika Garg, Archana Bhatnagar
{"title":"Anthocyanin-rich black wheat as a functional food for managing type 2 diabetes mellitus: a study on high fat diet-streptozotocin-induced diabetic rats.","authors":"Vandita Tiwari, Akhil Kamboj, Bhawna Sheoran, Era Chaudhary, Mona Yadav, Anita Kumari, Meena Krishania, Usman Ali, Apoorv Tiwari, Monika Garg, Archana Bhatnagar","doi":"10.1039/d4fo05065g","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>: Type 2 Diabetes Mellitus (T2DM) is associated with insulin resistance, hyperglycemia, and hyperlipidemia. Anthocyanins, which are natural antioxidants, have been reported to manage T2DM-related complications. However, the potential of anthocyanin-rich black wheat as a functional food for managing diabetes remains unexplored. <i>Aim</i>: This study aimed to investigate the effects of anthocyanin-rich black wheat on glucose metabolism, insulin sensitivity, lipid profile, oxidative stress, inflammation, and organ protection in high fat diet-streptozotocin (HFD-STZ) induced T2DM rats. <i>Methods</i>: T2DM was induced in rats using HFD-STZ. The rats were fed with either white wheat or anthocyanin-rich black wheat chapatti. Glucose metabolism, insulin sensitivity, lipid profile, antioxidant enzymes, inflammatory markers, and glucose transporters were assessed. Histopathological analysis of the liver, kidneys, and spleen was performed. <i>Results</i>: Compared to white wheat chapatti, black wheat chapatti exhibited higher α-amylase and α-glucosidase inhibitory activities. Black wheat chapatti consumption significantly reduced blood glucose and HbA1c levels, and improved insulin sensitivity, oral glucose tolerance, and insulin tolerance. Antioxidant enzyme (superoxide dismutase and catalase) activities were enhanced. Atherogenic dyslipidemia was attenuated, with improved high-density lipoprotein cholesterol levels. Inflammatory markers (TNF-α, IL-1β, leptin, resistin and cortisol) were reduced, while adiponectin (Acrp-30) levels increased. Black wheat chapatti activated adiponectin-AMPK and PI3K-AKT pathways, upregulating glucose transporters (GLUT-2 and GLUT-4). Histopathology revealed protective effects on the liver, kidneys, and spleen. <i>Conclusions</i>: Anthocyanin-rich black wheat chapatti ameliorates insulin resistance and associated complications in HFD-STZ-induced T2DM rats. It modulates key signaling pathways and glucose transporters, demonstrating its potential as a functional food for managing T2DM and its complications.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo05065g","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Type 2 Diabetes Mellitus (T2DM) is associated with insulin resistance, hyperglycemia, and hyperlipidemia. Anthocyanins, which are natural antioxidants, have been reported to manage T2DM-related complications. However, the potential of anthocyanin-rich black wheat as a functional food for managing diabetes remains unexplored. Aim: This study aimed to investigate the effects of anthocyanin-rich black wheat on glucose metabolism, insulin sensitivity, lipid profile, oxidative stress, inflammation, and organ protection in high fat diet-streptozotocin (HFD-STZ) induced T2DM rats. Methods: T2DM was induced in rats using HFD-STZ. The rats were fed with either white wheat or anthocyanin-rich black wheat chapatti. Glucose metabolism, insulin sensitivity, lipid profile, antioxidant enzymes, inflammatory markers, and glucose transporters were assessed. Histopathological analysis of the liver, kidneys, and spleen was performed. Results: Compared to white wheat chapatti, black wheat chapatti exhibited higher α-amylase and α-glucosidase inhibitory activities. Black wheat chapatti consumption significantly reduced blood glucose and HbA1c levels, and improved insulin sensitivity, oral glucose tolerance, and insulin tolerance. Antioxidant enzyme (superoxide dismutase and catalase) activities were enhanced. Atherogenic dyslipidemia was attenuated, with improved high-density lipoprotein cholesterol levels. Inflammatory markers (TNF-α, IL-1β, leptin, resistin and cortisol) were reduced, while adiponectin (Acrp-30) levels increased. Black wheat chapatti activated adiponectin-AMPK and PI3K-AKT pathways, upregulating glucose transporters (GLUT-2 and GLUT-4). Histopathology revealed protective effects on the liver, kidneys, and spleen. Conclusions: Anthocyanin-rich black wheat chapatti ameliorates insulin resistance and associated complications in HFD-STZ-induced T2DM rats. It modulates key signaling pathways and glucose transporters, demonstrating its potential as a functional food for managing T2DM and its complications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信