{"title":"Crosslinking degree variations enable programming and controlling soft fracture via sideways cracking","authors":"Miguel Angel Moreno-Mateos, Paul Steinmann","doi":"10.1038/s41524-024-01489-y","DOIUrl":null,"url":null,"abstract":"<p>Large deformations of soft materials are customarily associated with strong constitutive and geometrical nonlinearities that originate new modes of fracture. Some isotropic materials can develop strong fracture anisotropy, which manifests as modifications of the crack path. Sideways cracking occurs when the crack deviates to propagate in the loading direction, rather than perpendicular to it. This fracture mode results from higher resistance to propagation perpendicular to the principal stretch direction. It has been argued that such fracture anisotropy is related to deformation-induced anisotropy resulting from the microstructural stretching of polymer chains and, in strain-crystallizing elastomers, strain-induced crystallization mechanisms. However, the precise variation of the fracture behavior with the degree of crosslinking remains to be understood. Leveraging experiments and computational simulations, here we show that the tendency of a crack to propagate sideways in the two component Elastosil P7670 increases with the degree of crosslinking. We explore the mixing ratio for the synthesis of the elastomer that establishes the transition from forward to sideways fracturing. To assist the investigations, we construct a novel phase-field model for fracture where the critical energy release rate is directly related to the crosslinking degree. Our results demonstrate that fracture anisotropy can be modulated during the synthesis of the polymer. Then, we propose a roadmap with composite soft structures with low and highly crosslinked phases that allow for control over fracture, arresting and/or directing the fracture. The smart combination of the phases enables soft structures with enhanced fracture tolerance and reduced stiffness. By extending our computational framework as a virtual testbed, we capture the fracture performance of the composite samples and enable predictions based on more intricate composite unit cells. Overall, our work offers promising avenues for enhancing the fracture toughness of soft polymers.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"17 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01489-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Large deformations of soft materials are customarily associated with strong constitutive and geometrical nonlinearities that originate new modes of fracture. Some isotropic materials can develop strong fracture anisotropy, which manifests as modifications of the crack path. Sideways cracking occurs when the crack deviates to propagate in the loading direction, rather than perpendicular to it. This fracture mode results from higher resistance to propagation perpendicular to the principal stretch direction. It has been argued that such fracture anisotropy is related to deformation-induced anisotropy resulting from the microstructural stretching of polymer chains and, in strain-crystallizing elastomers, strain-induced crystallization mechanisms. However, the precise variation of the fracture behavior with the degree of crosslinking remains to be understood. Leveraging experiments and computational simulations, here we show that the tendency of a crack to propagate sideways in the two component Elastosil P7670 increases with the degree of crosslinking. We explore the mixing ratio for the synthesis of the elastomer that establishes the transition from forward to sideways fracturing. To assist the investigations, we construct a novel phase-field model for fracture where the critical energy release rate is directly related to the crosslinking degree. Our results demonstrate that fracture anisotropy can be modulated during the synthesis of the polymer. Then, we propose a roadmap with composite soft structures with low and highly crosslinked phases that allow for control over fracture, arresting and/or directing the fracture. The smart combination of the phases enables soft structures with enhanced fracture tolerance and reduced stiffness. By extending our computational framework as a virtual testbed, we capture the fracture performance of the composite samples and enable predictions based on more intricate composite unit cells. Overall, our work offers promising avenues for enhancing the fracture toughness of soft polymers.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.