Bio-inspired piezoelectric stick-slip actuation: Synergistic bridge-type and leveraged amplification mechanism via rowing-motion mimicry.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Shitong Yang, Hao Dong, Zhenguo Zhang, Daohong Zhang, Lin Zhang, Xiaohui Lu
{"title":"Bio-inspired piezoelectric stick-slip actuation: Synergistic bridge-type and leveraged amplification mechanism via rowing-motion mimicry.","authors":"Shitong Yang, Hao Dong, Zhenguo Zhang, Daohong Zhang, Lin Zhang, Xiaohui Lu","doi":"10.1063/5.0226718","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the development of a new bionic piezoelectric stick-slip actuator (PSSA). This actuator is designed to simulate the human rowing motion. By synergizing a lever amplification structure with a bridge amplification mechanism, the design not only mimics the rowing motion, where the lever amplification structure acts like an oar and the bridge amplification mechanism resembles the force exerted by a person operating the oar, but also suppresses the problem of backward displacement in traditional PSSAs. Finite element analysis and experimental results demonstrate the feasibility of the design, with a peak velocity of 17.48 mm/s and a maximum load capacity of 55 g. Comparative experiments have shown that the rowing-motion piezoelectric actuation mode outperforms the traditional PSSA mode, with a 16.8% increase in peak velocity and a 120% increase in load capacity. The innovative design has significant implications for the development of high-performance actuators.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226718","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the development of a new bionic piezoelectric stick-slip actuator (PSSA). This actuator is designed to simulate the human rowing motion. By synergizing a lever amplification structure with a bridge amplification mechanism, the design not only mimics the rowing motion, where the lever amplification structure acts like an oar and the bridge amplification mechanism resembles the force exerted by a person operating the oar, but also suppresses the problem of backward displacement in traditional PSSAs. Finite element analysis and experimental results demonstrate the feasibility of the design, with a peak velocity of 17.48 mm/s and a maximum load capacity of 55 g. Comparative experiments have shown that the rowing-motion piezoelectric actuation mode outperforms the traditional PSSA mode, with a 16.8% increase in peak velocity and a 120% increase in load capacity. The innovative design has significant implications for the development of high-performance actuators.

生物启发压电粘滑传动:通过模仿划船动作实现协同桥式和杠杆放大机制。
本文介绍了新型仿生压电粘滑致动器(PSSA)的开发情况。该致动器旨在模拟人类的划船运动。通过协同杠杆放大结构和桥式放大机构,该设计不仅模拟了划船运动,即杠杆放大结构像桨,桥式放大机构像人操作桨时施加的力,而且还抑制了传统 PSSA 中的后向位移问题。有限元分析和实验结果证明了该设计的可行性,其峰值速度为 17.48 mm/s,最大承载能力为 55 g。对比实验表明,划船运动压电驱动模式优于传统的 PSSA 模式,峰值速度提高了 16.8%,承载能力提高了 120%。这一创新设计对高性能致动器的开发具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信