M Fraenkel, E V Marley, Y Ehrlich, Z Henis, J Emig, A Meir, Y Ferber, D Guttman, G Strum, D Kartoon
{"title":"A platform for non-local thermodynamic equilibrium atomic physics research using the buried layer target approach at a kJ level laser facility.","authors":"M Fraenkel, E V Marley, Y Ehrlich, Z Henis, J Emig, A Meir, Y Ferber, D Guttman, G Strum, D Kartoon","doi":"10.1063/5.0235458","DOIUrl":null,"url":null,"abstract":"<p><p>We present a design and first use of a kJ level laser facility for research of non-local thermodynamic equilibrium atomic physics using the buried layer target method. The target design included a metal layer buried inside a plastic tamper with thicknesses tailored to the expected laser intensities. The target was illuminated from each side by two laser beams with intensities of 0.5-5 × 1014 W/cm2. The advanced diagnostic suite included static and time-resolved imagers and spectrometers with various spectral resolutions. A 3D printed dual elliptically curved spectrometer is presented, and its results are compared to a traditional crystal spectrometer. Experimental results and radiation hydrodynamic simulations demonstrate that the target achieved the desired thermodynamic conditions of ne ≈ 1021-1022 cm-3 and Te ≈ 1-2 keV.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0235458","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
We present a design and first use of a kJ level laser facility for research of non-local thermodynamic equilibrium atomic physics using the buried layer target method. The target design included a metal layer buried inside a plastic tamper with thicknesses tailored to the expected laser intensities. The target was illuminated from each side by two laser beams with intensities of 0.5-5 × 1014 W/cm2. The advanced diagnostic suite included static and time-resolved imagers and spectrometers with various spectral resolutions. A 3D printed dual elliptically curved spectrometer is presented, and its results are compared to a traditional crystal spectrometer. Experimental results and radiation hydrodynamic simulations demonstrate that the target achieved the desired thermodynamic conditions of ne ≈ 1021-1022 cm-3 and Te ≈ 1-2 keV.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.