{"title":"Analysis of Random Discrete Dopants Embedded Nanowire Resonant Tunnelling Diodes for Generation of Physically Unclonable Functions","authors":"Pranav Acharya;Ali Rezaei;Amretashis Sengupta;Tapas Dutta;Naveen Kumar;Patryk Maciazek;Asen Asenov;Vihar Georgiev","doi":"10.1109/TNANO.2024.3504963","DOIUrl":null,"url":null,"abstract":"In this work, we have performed quantum mechanical simulations of current flow in double-barrier III-V (GaAs/AlGaAs) nanowire resonant tunneling diodes (RTDs). Our simulations are based on the non-equilibrium Green's function (NEGF) quantum transport formalism implemented within our in-house simulator called NESS (Nano-Electronics Simulation Software). The NEGF formalism allows us to capture the detailed physical picture of quantum mechanical effects such as electrostatic quantum confinement, resonant tunneling of electrons through barriers in such structures and negative differential resistance. Also, by using NESS capabilities, we have simulated RTDs with Random Discrete Dopants (RDDs) as a source of statistical variability in the device. Our work shows that there is a direct correlation between the positions and the numbers of RDDs and main device output characteristics such as resonant-peak voltage and current (V\n<inline-formula><tex-math>$_\\text{r}$</tex-math></inline-formula>\n and I\n<inline-formula><tex-math>$_\\text{r}$</tex-math></inline-formula>\n) variations. Such V\n<inline-formula><tex-math>$_\\text{r}$</tex-math></inline-formula>\n and I\n<inline-formula><tex-math>$_\\text{r}$</tex-math></inline-formula>\n variability in RTDs is shown to be independent and yet also correlated. Hence, both parameters can be used together to encode information. This provides the opportunity and possibility for using a single or multiple RTDs as Physical Unclonable Functions (PUFs).","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"815-821"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10764758/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we have performed quantum mechanical simulations of current flow in double-barrier III-V (GaAs/AlGaAs) nanowire resonant tunneling diodes (RTDs). Our simulations are based on the non-equilibrium Green's function (NEGF) quantum transport formalism implemented within our in-house simulator called NESS (Nano-Electronics Simulation Software). The NEGF formalism allows us to capture the detailed physical picture of quantum mechanical effects such as electrostatic quantum confinement, resonant tunneling of electrons through barriers in such structures and negative differential resistance. Also, by using NESS capabilities, we have simulated RTDs with Random Discrete Dopants (RDDs) as a source of statistical variability in the device. Our work shows that there is a direct correlation between the positions and the numbers of RDDs and main device output characteristics such as resonant-peak voltage and current (V
$_\text{r}$
and I
$_\text{r}$
) variations. Such V
$_\text{r}$
and I
$_\text{r}$
variability in RTDs is shown to be independent and yet also correlated. Hence, both parameters can be used together to encode information. This provides the opportunity and possibility for using a single or multiple RTDs as Physical Unclonable Functions (PUFs).
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.