W Dupont, C Papaxanthis, L Lurquin, F Lebon, C Madden-Lombardi
{"title":"Negated actions are simulated within the primary motor cortex.","authors":"W Dupont, C Papaxanthis, L Lurquin, F Lebon, C Madden-Lombardi","doi":"10.1016/j.neuroscience.2024.12.018","DOIUrl":null,"url":null,"abstract":"<p><p>Controversy persists regarding the representation of linguistically negated actions, specifically concerning activation and inhibitory mechanisms in the motor system, and whether negated action sentences evoke an initial motor simulation of the action to be negated. We conducted two experiments probing corticospinal excitability (CSE) and short-interval intracortical inhibition (SICI) in the primary motor cortex at different latencies while reading affirmative and negative action sentences. In experiment one, twenty-six participants read action and non-action sentences in affirmative or negative forms. Using transcranial magnetic stimulation, we probed CSE in hand muscles at rest and at several latencies after verb presentation. We observed a greater CSE for action sentences compared to non-action sentences, regardless of verb form. In experiment two, nineteen participants read affirmative and negative action sentences. We measured CSE and SICI at short and long latencies after verb presentation. CSE was greater for affirmative and negative action sentences at both latencies compared to rest. SICI did not change at the short latency but increased at longer latencies, regardless of verb form. Negated action sentences showed the same motor excitability as affirmed action sentences with no additional inhibition at early latencies. These results lend support for the idea that actions to be negated are initially simulated within the motor system. Neural differences between affirmative and negative action sentences may occur outside the primary motor cortex.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"468-478"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.018","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Controversy persists regarding the representation of linguistically negated actions, specifically concerning activation and inhibitory mechanisms in the motor system, and whether negated action sentences evoke an initial motor simulation of the action to be negated. We conducted two experiments probing corticospinal excitability (CSE) and short-interval intracortical inhibition (SICI) in the primary motor cortex at different latencies while reading affirmative and negative action sentences. In experiment one, twenty-six participants read action and non-action sentences in affirmative or negative forms. Using transcranial magnetic stimulation, we probed CSE in hand muscles at rest and at several latencies after verb presentation. We observed a greater CSE for action sentences compared to non-action sentences, regardless of verb form. In experiment two, nineteen participants read affirmative and negative action sentences. We measured CSE and SICI at short and long latencies after verb presentation. CSE was greater for affirmative and negative action sentences at both latencies compared to rest. SICI did not change at the short latency but increased at longer latencies, regardless of verb form. Negated action sentences showed the same motor excitability as affirmed action sentences with no additional inhibition at early latencies. These results lend support for the idea that actions to be negated are initially simulated within the motor system. Neural differences between affirmative and negative action sentences may occur outside the primary motor cortex.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.