Achieving outstanding comprehensive performance with high piezoelectricity in CaBi2Nb2O9-based high-temperature piezoelectric ceramics via multi-field coupling strategy
{"title":"Achieving outstanding comprehensive performance with high piezoelectricity in CaBi2Nb2O9-based high-temperature piezoelectric ceramics via multi-field coupling strategy","authors":"Changbai Long, Anwei Xu, Ziqian Su, Wei Ren, Laijun Liu, Xiangdong Ding","doi":"10.1016/j.jmat.2024.100990","DOIUrl":null,"url":null,"abstract":"Aurivillius phase CaBi<sub>2</sub>Nb<sub>2</sub>O<sub>9</sub> (CBNO) ceramic with an ultrahigh Curie temperature (<em>T</em><sub>c</sub>) of ∼934 °C shows huge potential in high-temperature piezoelectric applications. However, low piezoelectricity and poor electric insulation prevent its applications in high-temperature sensing. Here, we propose an effective multi-field coupling strategy to synergistically optimize piezoelectric property, electrical conduction behavior and temperature stability of CBNO ceramic. The constructed lattice stress and electric fields induced by introducing Li/Pr and Bi/Sc doping have great impacts on the lattice structure, microstructure, domain structure and defect chemistry. Therefore, a significant increase in piezoelectric activity (<em>d</em><sub>33</sub>) is resulted from the enhancement of polarization, the improvement of breakdown electric field and the production of nanoscale domains. In especial, the existence of pseudo-tetragonal phase boundary is helpful for the enhanced <em>d</em><sub>33</sub>. In the designed Ca<sub>1–3<em>x</em></sub>(Li<sub>0.5</sub>Pr<sub>0.5</sub>)<sub><em>x</em></sub>Bi<sub>2+2<em>x</em></sub>Nb<sub>2–<em>x</em></sub>Sc<sub><em>x</em></sub>O<sub>9</sub> system, a high <em>d</em><sub>33</sub> of ∼18.2 pC/N accompanied by an ultrahigh <em>T</em><sub>c</sub> of ∼938 °C is achieved in the <em>x</em>=0.02 ceramic. This combined with high electrical resistivity (<em>ρ</em>∼1.72 MΩ cm at 600 °C) and nearly stable <em>d</em><sub>33</sub> (up to 800 °C) indicates that it is a very promising piezoelectric material for high-temperature (up to 600 °C or higher) sensing applications.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"13 11 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100990","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aurivillius phase CaBi2Nb2O9 (CBNO) ceramic with an ultrahigh Curie temperature (Tc) of ∼934 °C shows huge potential in high-temperature piezoelectric applications. However, low piezoelectricity and poor electric insulation prevent its applications in high-temperature sensing. Here, we propose an effective multi-field coupling strategy to synergistically optimize piezoelectric property, electrical conduction behavior and temperature stability of CBNO ceramic. The constructed lattice stress and electric fields induced by introducing Li/Pr and Bi/Sc doping have great impacts on the lattice structure, microstructure, domain structure and defect chemistry. Therefore, a significant increase in piezoelectric activity (d33) is resulted from the enhancement of polarization, the improvement of breakdown electric field and the production of nanoscale domains. In especial, the existence of pseudo-tetragonal phase boundary is helpful for the enhanced d33. In the designed Ca1–3x(Li0.5Pr0.5)xBi2+2xNb2–xScxO9 system, a high d33 of ∼18.2 pC/N accompanied by an ultrahigh Tc of ∼938 °C is achieved in the x=0.02 ceramic. This combined with high electrical resistivity (ρ∼1.72 MΩ cm at 600 °C) and nearly stable d33 (up to 800 °C) indicates that it is a very promising piezoelectric material for high-temperature (up to 600 °C or higher) sensing applications.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.