Meihui Yu, Nuseybe Bulut, Xinruo Zhao, Rosa Jarumy López Rivera, Yue Li, Bruce R. Hamaker
{"title":"Modulation of Gut Microbiota by the Complex of Caffeic Acid and Corn Starch","authors":"Meihui Yu, Nuseybe Bulut, Xinruo Zhao, Rosa Jarumy López Rivera, Yue Li, Bruce R. Hamaker","doi":"10.1021/acs.jafc.4c06946","DOIUrl":null,"url":null,"abstract":"To understand the impact of different types of polyphenol-starch complexes on digestibility and gut microbiota, caffeic acid (CA) and corn starch (CS) complexes were prepared by coheating and high-pressure homogenization. The resistant starch content in CS coheated with CA (HCS-CA) and HCS-CA after high-pressure homogenization (HCS-CA-HPH) was 47.75 and 56.65%, respectively. Fourier transform infrared spectroscopy and X-ray diffraction analysis revealed hydrogen bonding in coheated samples and enhanced V-complex formation with high-pressure homogenization. The <i>in vitro</i>-digested complexes were of the B + V type, with higher relative crystallinity and short-range ordering of HCS-CA-HPH. Fermentation of the digested complex with human feces increased the yield of acetate, butyrate, and total short-chain fatty acids (SCFAs), which was more pronounced for HCS-CA-HPH. HCS-CA increased <i>torques-Ruminococcaceae</i> abundance, while HCS-CA-HPH boosted <i>Prevotella</i>, <i>Roseburia</i>, <i>Lachnospiraceae</i>, and <i>Lachnospiraceae-NK4A136</i>. Overall, CA and CS complexes enhanced beneficial bacteria and increased SCFA production.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"35 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c06946","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To understand the impact of different types of polyphenol-starch complexes on digestibility and gut microbiota, caffeic acid (CA) and corn starch (CS) complexes were prepared by coheating and high-pressure homogenization. The resistant starch content in CS coheated with CA (HCS-CA) and HCS-CA after high-pressure homogenization (HCS-CA-HPH) was 47.75 and 56.65%, respectively. Fourier transform infrared spectroscopy and X-ray diffraction analysis revealed hydrogen bonding in coheated samples and enhanced V-complex formation with high-pressure homogenization. The in vitro-digested complexes were of the B + V type, with higher relative crystallinity and short-range ordering of HCS-CA-HPH. Fermentation of the digested complex with human feces increased the yield of acetate, butyrate, and total short-chain fatty acids (SCFAs), which was more pronounced for HCS-CA-HPH. HCS-CA increased torques-Ruminococcaceae abundance, while HCS-CA-HPH boosted Prevotella, Roseburia, Lachnospiraceae, and Lachnospiraceae-NK4A136. Overall, CA and CS complexes enhanced beneficial bacteria and increased SCFA production.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.