{"title":"Thermal conductive radiative cooling film for local heat dissipation","authors":"Qin Ye, Xingyu Chen, Hongjie Yan, Meijie Chen","doi":"10.1016/j.mtphys.2024.101626","DOIUrl":null,"url":null,"abstract":"Radiative cooling has attracted lots of attention recently due to its electricity-free cooling by reflecting solar radiation and emitting thermal radiation to the cold outer space. However, how to improve heat dissipation performance at above-ambient temperatures is still a challenge for outdoor flexible devices. Here a bilayer structure was designed to achieve a thin and thermal conductive radiative cooling film for local heat dissipation in outdoor flexible devices, the local heating area can be avoided by the high in-plane thermal conductive performance and heat can be efficiently dissipated to the outer environment by daytime radiative cooling. The top layer consisted of porous hBN@PVDF-HFP film (thickness ∼ 100 μm) to realize daytime radiative cooling while the bottom layer was the directional graphene film (thickness ∼ 30 μm) to promote in-plane thermal conductive performance, high solar reflectance <span><span style=\"\"></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"0.24ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -51.7 0 103.4\" width=\"0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"></g></svg></span><script type=\"math/mml\"><math></math></script></span> = 0.944, thermal emittance <span><span style=\"\"></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"0.24ex\" role=\"img\" style=\"vertical-align: -0.12ex;\" viewbox=\"0 -51.7 0 103.4\" width=\"0\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"></g></svg></span><script type=\"math/mml\"><math></math></script></span> = 0.904, and in-plane thermal diffusivity 185.7 mm<sup>2</sup> s<sup>-1</sup> were obtained. Under sunlight, the designed radiative cooling film can greatly reduce the local working temperature from 130.6 <sup>o</sup>C to 63.3 <sup>o</sup>C compared with the reference radiative cooling film at the same local heating power, which also shows great local heat dissipation performance under a non-flat surface. This work provides a potential approach to developing thermal conductive radiative cooling technologies for outdoor local heat dissipation applications.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"119 1","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2024.101626","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiative cooling has attracted lots of attention recently due to its electricity-free cooling by reflecting solar radiation and emitting thermal radiation to the cold outer space. However, how to improve heat dissipation performance at above-ambient temperatures is still a challenge for outdoor flexible devices. Here a bilayer structure was designed to achieve a thin and thermal conductive radiative cooling film for local heat dissipation in outdoor flexible devices, the local heating area can be avoided by the high in-plane thermal conductive performance and heat can be efficiently dissipated to the outer environment by daytime radiative cooling. The top layer consisted of porous hBN@PVDF-HFP film (thickness ∼ 100 μm) to realize daytime radiative cooling while the bottom layer was the directional graphene film (thickness ∼ 30 μm) to promote in-plane thermal conductive performance, high solar reflectance = 0.944, thermal emittance = 0.904, and in-plane thermal diffusivity 185.7 mm2 s-1 were obtained. Under sunlight, the designed radiative cooling film can greatly reduce the local working temperature from 130.6 oC to 63.3 oC compared with the reference radiative cooling film at the same local heating power, which also shows great local heat dissipation performance under a non-flat surface. This work provides a potential approach to developing thermal conductive radiative cooling technologies for outdoor local heat dissipation applications.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.