Skin-inspired laminated liquid metal doped hydrogel with mechanical toughness and high electrical conductivity†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junlong Wang, Xiaosheng Huo, Wenjun Huang, Junbin Xu, Pengcheng Yu, Xiangqian Zhang, Zhenhua Cong and Jian Niu
{"title":"Skin-inspired laminated liquid metal doped hydrogel with mechanical toughness and high electrical conductivity†","authors":"Junlong Wang, Xiaosheng Huo, Wenjun Huang, Junbin Xu, Pengcheng Yu, Xiangqian Zhang, Zhenhua Cong and Jian Niu","doi":"10.1039/D4TC03817G","DOIUrl":null,"url":null,"abstract":"<p >Developing a simple method to prepare conductive hydrogels with both mechanical toughness and high electrical conductivity remains a significant challenge. Here, a laminated conductive hydrogel was engineered, featuring a unique composition with EGaIn micro/nanodroplets concentrated on one side and polyvinyl alcohol (PVA) hydrogel on the other. To achieve high electrical conductivity in the liquid metal (LM) conductive layer, while preventing the aggregation of liquid metal particles (LMPs) within the PVA hydrogel, PEDOT:PSS nanoparticles with an electrical potential opposite to that of the LMPs were introduced. Under the combined effects of gravitational settling and electrostatic-assisted settling, the LM conductive layer forms a network of large liquid metal particles as the primary framework, with smaller particles serving as network interconnectors. This configuration offers excellent electrical conductivity (1.67 × 10<small><sup>5</sup></small> S m<small><sup>−1</sup></small>) and maintains stable resistance under 617% tensile strain. Due to multiple cross-linking mechanisms, the prepared conductive hydrogel exhibits high Young's modulus (∼178.14 MPa), stretchability (∼818%), and toughness (∼185.9 MJ m<small><sup>−3</sup></small>), outperforming most existing tough gels, biological tissues, and natural rubber. The conductive hydrogel enables the creation of ultra-thin capacitive sensors with high sensitivity (0.05 g) and rapid response (20 ms). These devices enable accurate monitoring of human motions and bioelectrical signals, highlighting their immense potential in the fields of soft electronics and wearable technology.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19412-19423"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03817g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing a simple method to prepare conductive hydrogels with both mechanical toughness and high electrical conductivity remains a significant challenge. Here, a laminated conductive hydrogel was engineered, featuring a unique composition with EGaIn micro/nanodroplets concentrated on one side and polyvinyl alcohol (PVA) hydrogel on the other. To achieve high electrical conductivity in the liquid metal (LM) conductive layer, while preventing the aggregation of liquid metal particles (LMPs) within the PVA hydrogel, PEDOT:PSS nanoparticles with an electrical potential opposite to that of the LMPs were introduced. Under the combined effects of gravitational settling and electrostatic-assisted settling, the LM conductive layer forms a network of large liquid metal particles as the primary framework, with smaller particles serving as network interconnectors. This configuration offers excellent electrical conductivity (1.67 × 105 S m−1) and maintains stable resistance under 617% tensile strain. Due to multiple cross-linking mechanisms, the prepared conductive hydrogel exhibits high Young's modulus (∼178.14 MPa), stretchability (∼818%), and toughness (∼185.9 MJ m−3), outperforming most existing tough gels, biological tissues, and natural rubber. The conductive hydrogel enables the creation of ultra-thin capacitive sensors with high sensitivity (0.05 g) and rapid response (20 ms). These devices enable accurate monitoring of human motions and bioelectrical signals, highlighting their immense potential in the fields of soft electronics and wearable technology.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信