{"title":"Skin-inspired laminated liquid metal doped hydrogel with mechanical toughness and high electrical conductivity†","authors":"Junlong Wang, Xiaosheng Huo, Wenjun Huang, Junbin Xu, Pengcheng Yu, Xiangqian Zhang, Zhenhua Cong and Jian Niu","doi":"10.1039/D4TC03817G","DOIUrl":null,"url":null,"abstract":"<p >Developing a simple method to prepare conductive hydrogels with both mechanical toughness and high electrical conductivity remains a significant challenge. Here, a laminated conductive hydrogel was engineered, featuring a unique composition with EGaIn micro/nanodroplets concentrated on one side and polyvinyl alcohol (PVA) hydrogel on the other. To achieve high electrical conductivity in the liquid metal (LM) conductive layer, while preventing the aggregation of liquid metal particles (LMPs) within the PVA hydrogel, PEDOT:PSS nanoparticles with an electrical potential opposite to that of the LMPs were introduced. Under the combined effects of gravitational settling and electrostatic-assisted settling, the LM conductive layer forms a network of large liquid metal particles as the primary framework, with smaller particles serving as network interconnectors. This configuration offers excellent electrical conductivity (1.67 × 10<small><sup>5</sup></small> S m<small><sup>−1</sup></small>) and maintains stable resistance under 617% tensile strain. Due to multiple cross-linking mechanisms, the prepared conductive hydrogel exhibits high Young's modulus (∼178.14 MPa), stretchability (∼818%), and toughness (∼185.9 MJ m<small><sup>−3</sup></small>), outperforming most existing tough gels, biological tissues, and natural rubber. The conductive hydrogel enables the creation of ultra-thin capacitive sensors with high sensitivity (0.05 g) and rapid response (20 ms). These devices enable accurate monitoring of human motions and bioelectrical signals, highlighting their immense potential in the fields of soft electronics and wearable technology.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19412-19423"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03817g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a simple method to prepare conductive hydrogels with both mechanical toughness and high electrical conductivity remains a significant challenge. Here, a laminated conductive hydrogel was engineered, featuring a unique composition with EGaIn micro/nanodroplets concentrated on one side and polyvinyl alcohol (PVA) hydrogel on the other. To achieve high electrical conductivity in the liquid metal (LM) conductive layer, while preventing the aggregation of liquid metal particles (LMPs) within the PVA hydrogel, PEDOT:PSS nanoparticles with an electrical potential opposite to that of the LMPs were introduced. Under the combined effects of gravitational settling and electrostatic-assisted settling, the LM conductive layer forms a network of large liquid metal particles as the primary framework, with smaller particles serving as network interconnectors. This configuration offers excellent electrical conductivity (1.67 × 105 S m−1) and maintains stable resistance under 617% tensile strain. Due to multiple cross-linking mechanisms, the prepared conductive hydrogel exhibits high Young's modulus (∼178.14 MPa), stretchability (∼818%), and toughness (∼185.9 MJ m−3), outperforming most existing tough gels, biological tissues, and natural rubber. The conductive hydrogel enables the creation of ultra-thin capacitive sensors with high sensitivity (0.05 g) and rapid response (20 ms). These devices enable accurate monitoring of human motions and bioelectrical signals, highlighting their immense potential in the fields of soft electronics and wearable technology.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors