Fluorescence modulation of pyridinium betaines: a mechanofluorochromic investigation†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peter W. McDonald, Jingjing Xu, Dale R. Lonsdale, Isabelle Jones, Benjamin Poggi, Rosalind P. Cox, Stéphane Aloise, Andrew D. Scully, Clémence Allain, Laurence Bodelot, Stephen A. Moggach, Toby D. M. Bell, Rémi Métivier, Sebastian G. B. Furness, Lars Goerigk and Chris Ritchie
{"title":"Fluorescence modulation of pyridinium betaines: a mechanofluorochromic investigation†","authors":"Peter W. McDonald, Jingjing Xu, Dale R. Lonsdale, Isabelle Jones, Benjamin Poggi, Rosalind P. Cox, Stéphane Aloise, Andrew D. Scully, Clémence Allain, Laurence Bodelot, Stephen A. Moggach, Toby D. M. Bell, Rémi Métivier, Sebastian G. B. Furness, Lars Goerigk and Chris Ritchie","doi":"10.1039/D4TC04290E","DOIUrl":null,"url":null,"abstract":"<p >A reversible change in a material's fluorescence spectrum on the application of force is known as mechanofluorochromism (MFC) and is a well-established field of study. However, the mechanism(s) responsible for the chromism may be different for each new material and it is important to elucidate these for many reasons, including the rational design of new analogues with targeted properties. Herein, the photophysical properties and mechanistic understanding of two MFC pyridinium betaines are reported. The emission sensitivity is explained by the coexistence of crystalline and amorphous phases after the application of mechanical force, with increased conformational flexibility in the amorphous phase facilitating red-shifts in emission. This explanation is supported by evidence from a range of spectroscopic techniques, including electron diffraction (ED) and fluorescence lifetime imaging microscopy (FLIM) mapping, two techniques that have, to the best of our knowledge, not been applied in the field of MFC to mechanically ground particles. For one of the compounds, ED on ground microcrystallites shows unambiguously that the same crystalline phase is retained after grinding, along with an amorphous contribution, providing direct evidence for the crystalline-amorphous mechanism, and the presence of these two phases is further supported by FLIM mapping. We envision these techniques will be highly instructive for the analysis of similar materials.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19371-19385"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc04290e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A reversible change in a material's fluorescence spectrum on the application of force is known as mechanofluorochromism (MFC) and is a well-established field of study. However, the mechanism(s) responsible for the chromism may be different for each new material and it is important to elucidate these for many reasons, including the rational design of new analogues with targeted properties. Herein, the photophysical properties and mechanistic understanding of two MFC pyridinium betaines are reported. The emission sensitivity is explained by the coexistence of crystalline and amorphous phases after the application of mechanical force, with increased conformational flexibility in the amorphous phase facilitating red-shifts in emission. This explanation is supported by evidence from a range of spectroscopic techniques, including electron diffraction (ED) and fluorescence lifetime imaging microscopy (FLIM) mapping, two techniques that have, to the best of our knowledge, not been applied in the field of MFC to mechanically ground particles. For one of the compounds, ED on ground microcrystallites shows unambiguously that the same crystalline phase is retained after grinding, along with an amorphous contribution, providing direct evidence for the crystalline-amorphous mechanism, and the presence of these two phases is further supported by FLIM mapping. We envision these techniques will be highly instructive for the analysis of similar materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信