Stretchable electronics based on inorganic semiconducting materials

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seung-Han Kang, Jeong-Wan Jo, Jaehyun Kim and Sung Kyu Park
{"title":"Stretchable electronics based on inorganic semiconducting materials","authors":"Seung-Han Kang, Jeong-Wan Jo, Jaehyun Kim and Sung Kyu Park","doi":"10.1039/D4TC03745F","DOIUrl":null,"url":null,"abstract":"<p >Recent progress in the growth and development of unconventional electronics engineered on plastic and even elastomeric substrates with flexibility and stretchability has opened up new opportunities for unprecedented applications over the past few years, especially of relevance in electronic skin and bio-integrated systems. The associated assembly technologies provide the ability to accommodate demanding forms of unusual shapes, mechanical flexure, and stretching structures that are not allowed for conventional silicon-based applications. Specifically, mechanically guided designs with advanced classes of inorganic electronic components including metal-oxides and nanostructures can offer mechanical properties with superior performance and functionality to organic materials, which have comparatively limited characteristics, allowing high-density device integration onto various soft and curvilinear shapes. This review summarizes the several approaches and current state-of-the art of the development of stretchable electronics based on inorganic semiconducting materials. Trends from the diverse structural geometries for functional device designs and fundamental principles of device components and modules to the key fabrication methods and the essential investigations, various stretchable device applications and recent developments in system demonstrations are fully covered. Finally, future prospects and perspectives on the challenges and opportunities for the inorganic based stretchable electronics are also provided.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19323-19351"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03745f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent progress in the growth and development of unconventional electronics engineered on plastic and even elastomeric substrates with flexibility and stretchability has opened up new opportunities for unprecedented applications over the past few years, especially of relevance in electronic skin and bio-integrated systems. The associated assembly technologies provide the ability to accommodate demanding forms of unusual shapes, mechanical flexure, and stretching structures that are not allowed for conventional silicon-based applications. Specifically, mechanically guided designs with advanced classes of inorganic electronic components including metal-oxides and nanostructures can offer mechanical properties with superior performance and functionality to organic materials, which have comparatively limited characteristics, allowing high-density device integration onto various soft and curvilinear shapes. This review summarizes the several approaches and current state-of-the art of the development of stretchable electronics based on inorganic semiconducting materials. Trends from the diverse structural geometries for functional device designs and fundamental principles of device components and modules to the key fabrication methods and the essential investigations, various stretchable device applications and recent developments in system demonstrations are fully covered. Finally, future prospects and perspectives on the challenges and opportunities for the inorganic based stretchable electronics are also provided.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信