Jia Li, Jianke Tian, Hengbo Liu, Yan Li, Linyang Li, Jun Li, Guodong Liu and Junjie Shi
{"title":"Piezoelectric polarizations and valley-related multiple Hall effects in TiAlX3 monolayers (X = Se, Te)†","authors":"Jia Li, Jianke Tian, Hengbo Liu, Yan Li, Linyang Li, Jun Li, Guodong Liu and Junjie Shi","doi":"10.1039/D4TC03559C","DOIUrl":null,"url":null,"abstract":"<p >Valleytronics, spintronics and piezotronics are emerging fields that aim to manipulate the valley, spin and charge degrees of freedom to control related transport properties in condensed matter. Here, we predict that TiAlX<small><sub>3</sub></small> (X = Se, Te) are multifunctional ferromagnetic semiconductors with large valley polarization up to 179.7 meV and a large in-plane piezoelectric response up to −66.02 pm V<small><sup>−1</sup></small>. Strain-induced topological phase transitions and the quantum anomalous valley Hall effect (QAVHE) can be found in TiAlSe<small><sub>3</sub></small>, where 100% valley- and spin-polarization can be generated by half-valley metallic (HVM) states. Combining the sequent band inversions of the d<small><sub><em>x</em><small><sup>2</sup></small>−<em>y</em><small><sup>2</sup></small></sub></small>/d<small><sub><em>xy</em></sub></small> and d<small><sub><em>z</em><small><sup>2</sup></small></sub></small> orbitals at K and K′ valleys with a two-band strained <em>k</em>·<em>p</em> model, the physical mechanism in topological phase transitions is illuminated. Finally, based on the coexistence of the anomalous valley Hall effect (AVHE) and piezoelectric transport in ferrovalley systems, we propose the piezoelectric-AVHE (PAVHE) in which the carriers from the polarized-valleys are driven by the intrinsic polarized electric field established by the piezoelectric response. Our work enriches the valley-related multiple Hall effect and stimulates further experimental works related to the valley physics.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19660-19670"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03559c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Valleytronics, spintronics and piezotronics are emerging fields that aim to manipulate the valley, spin and charge degrees of freedom to control related transport properties in condensed matter. Here, we predict that TiAlX3 (X = Se, Te) are multifunctional ferromagnetic semiconductors with large valley polarization up to 179.7 meV and a large in-plane piezoelectric response up to −66.02 pm V−1. Strain-induced topological phase transitions and the quantum anomalous valley Hall effect (QAVHE) can be found in TiAlSe3, where 100% valley- and spin-polarization can be generated by half-valley metallic (HVM) states. Combining the sequent band inversions of the dx2−y2/dxy and dz2 orbitals at K and K′ valleys with a two-band strained k·p model, the physical mechanism in topological phase transitions is illuminated. Finally, based on the coexistence of the anomalous valley Hall effect (AVHE) and piezoelectric transport in ferrovalley systems, we propose the piezoelectric-AVHE (PAVHE) in which the carriers from the polarized-valleys are driven by the intrinsic polarized electric field established by the piezoelectric response. Our work enriches the valley-related multiple Hall effect and stimulates further experimental works related to the valley physics.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors