FiDRL: Flexible Invocation-Based Deep Reinforcement Learning for DVFS Scheduling in Embedded Systems

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jingjin Li;Weixiong Jiang;Yuting He;Qingyu Yang;Anqi Gao;Yajun Ha;Ender Özcan;Ruibin Bai;Tianxiang Cui;Heng Yu
{"title":"FiDRL: Flexible Invocation-Based Deep Reinforcement Learning for DVFS Scheduling in Embedded Systems","authors":"Jingjin Li;Weixiong Jiang;Yuting He;Qingyu Yang;Anqi Gao;Yajun Ha;Ender Özcan;Ruibin Bai;Tianxiang Cui;Heng Yu","doi":"10.1109/TC.2024.3465933","DOIUrl":null,"url":null,"abstract":"Deep Reinforcement Learning (DRL)-based Dynamic Voltage Frequency Scaling (DVFS) has shown great promise for energy conservation in embedded systems. While many works were devoted to validating its efficacy or improving its performance, few discuss the feasibility of the DRL agent deployment for embedded computing. State-of-the-art approaches focus on the miniaturization of agents’ inferential networks, such as pruning and quantization, to minimize their energy and resource consumption. However, this spatial-based paradigm still proves inadequate for resource-stringent systems. In this paper, we address the feasibility from a temporal perspective, where FiDRL, a flexible invocation-based DRL model is proposed to judiciously invoke itself to minimize the overall system energy consumption, given that the DRL agent incurs non-negligible energy overhead during invocations. Our approach is three-fold: (1) FiDRL that extends DRL by incorporating the agent's invocation interval into the action space to achieve invocation flexibility; (2) a FiDRL-based DVFS approach for both inter- and intra-task scheduling that minimizes the overall execution energy consumption; and (3) a FiDRL-based DVFS platform design and an on/off-chip hybrid algorithm specialized for training the DRL agent for embedded systems. Experiment results show that FiDRL achieves 55.1% agent invocation cost reduction, under 23.3% overall energy reduction, compared to state-of-the-art approaches.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"71-85"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10689358/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Reinforcement Learning (DRL)-based Dynamic Voltage Frequency Scaling (DVFS) has shown great promise for energy conservation in embedded systems. While many works were devoted to validating its efficacy or improving its performance, few discuss the feasibility of the DRL agent deployment for embedded computing. State-of-the-art approaches focus on the miniaturization of agents’ inferential networks, such as pruning and quantization, to minimize their energy and resource consumption. However, this spatial-based paradigm still proves inadequate for resource-stringent systems. In this paper, we address the feasibility from a temporal perspective, where FiDRL, a flexible invocation-based DRL model is proposed to judiciously invoke itself to minimize the overall system energy consumption, given that the DRL agent incurs non-negligible energy overhead during invocations. Our approach is three-fold: (1) FiDRL that extends DRL by incorporating the agent's invocation interval into the action space to achieve invocation flexibility; (2) a FiDRL-based DVFS approach for both inter- and intra-task scheduling that minimizes the overall execution energy consumption; and (3) a FiDRL-based DVFS platform design and an on/off-chip hybrid algorithm specialized for training the DRL agent for embedded systems. Experiment results show that FiDRL achieves 55.1% agent invocation cost reduction, under 23.3% overall energy reduction, compared to state-of-the-art approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信