Remora: A Low-Latency DAG-Based BFT Through Optimistic Paths

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xiaohai Dai;Wei Li;Guanxiong Wang;Jiang Xiao;Haoyang Chen;Shufei Li;Albert Y. Zomaya;Hai Jin
{"title":"Remora: A Low-Latency DAG-Based BFT Through Optimistic Paths","authors":"Xiaohai Dai;Wei Li;Guanxiong Wang;Jiang Xiao;Haoyang Chen;Shufei Li;Albert Y. Zomaya;Hai Jin","doi":"10.1109/TC.2024.3461309","DOIUrl":null,"url":null,"abstract":"Standing as a foundational element within blockchain systems, the \n<i>Byzantine Fault Tolerant</i>\n (BFT) consensus has garnered significant attention over the past decade. The introduction of a \n<i>Directed Acyclic Directed</i>\n (DAG) structure into BFT consensus design, termed DAG-based BFT, has emerged to bolster throughput. However, prevalent DAG-based protocols grapple with substantial latency issues, suffering from a latency gap compared to non-DAG protocols. For instance, leading-edge DAG-based protocols named GradedDAG and BullShark exhibit a good-case latency of \n<inline-formula><tex-math>$4$</tex-math></inline-formula>\n and \n<inline-formula><tex-math>$6$</tex-math></inline-formula>\n communication rounds, respectively. In contrast, the non-DAG protocol, exemplified by PBFT, attains a latency of \n<inline-formula><tex-math>$3$</tex-math></inline-formula>\n rounds in favorable conditions. To bridge this latency gap, we propose Remora, a novel DAG-based BFT protocol. Remora achieves a reduced latency of \n<inline-formula><tex-math>$3$</tex-math></inline-formula>\n rounds by incorporating optimistic paths. At its core, Remora endeavors to commit blocks through the optimistic path initially, facilitating low latency in favorable situations. Conversely, in unfavorable scenarios, Remora seamlessly transitions to a pessimistic path to ensure liveness. Various experiments validate Remora's feasibility and efficiency, highlighting its potential as a robust solution in the realm of BFT consensus protocols.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"57-70"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680428","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10680428/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Standing as a foundational element within blockchain systems, the Byzantine Fault Tolerant (BFT) consensus has garnered significant attention over the past decade. The introduction of a Directed Acyclic Directed (DAG) structure into BFT consensus design, termed DAG-based BFT, has emerged to bolster throughput. However, prevalent DAG-based protocols grapple with substantial latency issues, suffering from a latency gap compared to non-DAG protocols. For instance, leading-edge DAG-based protocols named GradedDAG and BullShark exhibit a good-case latency of $4$ and $6$ communication rounds, respectively. In contrast, the non-DAG protocol, exemplified by PBFT, attains a latency of $3$ rounds in favorable conditions. To bridge this latency gap, we propose Remora, a novel DAG-based BFT protocol. Remora achieves a reduced latency of $3$ rounds by incorporating optimistic paths. At its core, Remora endeavors to commit blocks through the optimistic path initially, facilitating low latency in favorable situations. Conversely, in unfavorable scenarios, Remora seamlessly transitions to a pessimistic path to ensure liveness. Various experiments validate Remora's feasibility and efficiency, highlighting its potential as a robust solution in the realm of BFT consensus protocols.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信