Balanced Modular Addition for the Moduli Set $ \{2^{q},2^{q}\mp 1,2^{2q}+1\}${2q,2q∓1,22q+1} via Moduli-($ 2^{q}\mp \sqrt{-1}$2q∓-1) Adders

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Ghassem Jaberipur;Elham Rahman;Jeong-A Lee
{"title":"Balanced Modular Addition for the Moduli Set $ \\{2^{q},2^{q}\\mp 1,2^{2q}+1\\}${2q,2q∓1,22q+1} via Moduli-($ 2^{q}\\mp \\sqrt{-1}$2q∓-1) Adders","authors":"Ghassem Jaberipur;Elham Rahman;Jeong-A Lee","doi":"10.1109/TC.2024.3461235","DOIUrl":null,"url":null,"abstract":"Moduli-set \n<inline-formula><tex-math>$ \\mathbf{\\tau}=\\{2^{\\boldsymbol{q}},2^{\\boldsymbol{q}}\\pm 1\\}$</tex-math></inline-formula>\n is often the base of choice for realization of digital computations via residue number systems. The optimum arithmetic performance in parallel residue channels, is generally achieved via equal bit-width residues (e.g., \n<inline-formula><tex-math>$ \\boldsymbol{q}~ \\mathbf{i}\\mathbf{n}~ \\mathbf{\\tau}$</tex-math></inline-formula>\n) that usually leads to equal computation speed within all the residue channels. However, the commonly difficult and costly task of reverse conversion (RC) is often eased in the existence of conjugate moduli. For example, \n<inline-formula><tex-math>$ 2^{\\boldsymbol{q}}\\mp 1\\in \\mathbf{\\tau}$</tex-math></inline-formula>\n, lead to the efficient modulo-(\n<inline-formula><tex-math>$ 2^{2\\boldsymbol{q}}-1$</tex-math></inline-formula>\n) addition, as the bulk of \n<inline-formula><tex-math>$ \\mathbf{\\tau}$</tex-math></inline-formula>\n-RC, via the New-CRT reverse conversion method. Nevertheless, for additional dynamic range, \n<inline-formula><tex-math>$ \\mathbf{\\tau}$</tex-math></inline-formula>\n is augmented with other moduli. In particular, \n<inline-formula><tex-math>$ \\mathbf{\\phi}=\\mathbf{\\tau}\\cup \\{2^{2\\boldsymbol{q}}+1\\}$</tex-math></inline-formula>\n, leads to efficient RC, where the added modulo is conjugate with the product \n<inline-formula><tex-math>$ 2^{2\\boldsymbol{q}}-1$</tex-math></inline-formula>\n of \n<inline-formula><tex-math>$ 2^{\\boldsymbol{q}}\\mp 1\\in \\mathbf{\\tau}$</tex-math></inline-formula>\n. Therefore, the final step of \n<inline-formula><tex-math>$ \\mathbf{\\phi}$</tex-math></inline-formula>\n-RC would be fast and low cost/power modulo-(\n<inline-formula><tex-math>$ 2^{4\\boldsymbol{q}}-1$</tex-math></inline-formula>\n) addition. However, the \n<inline-formula><tex-math>$ 2\\boldsymbol{q}$</tex-math></inline-formula>\n-bit channel-width jeopardizes the existing delay-balance in \n<inline-formula><tex-math>$ \\mathbf{\\tau}$</tex-math></inline-formula>\n. As a remedial solution, given that \n<inline-formula><tex-math>$ 2^{2\\boldsymbol{q}}+1=\\left(2^{\\boldsymbol{q}}-\\boldsymbol{j}\\right)\\left(2^{\\boldsymbol{q}}+\\boldsymbol{j}\\right)$</tex-math></inline-formula>\n, with \n<inline-formula><tex-math>$ \\boldsymbol{j}=\\sqrt{-1}$</tex-math></inline-formula>\n, we design and implement modulo-(\n<inline-formula><tex-math>$ 2^{2\\boldsymbol{q}}+1$</tex-math></inline-formula>\n) adders via two parallel \n<inline-formula><tex-math>$ \\boldsymbol{q}$</tex-math></inline-formula>\n-bit moduli-(\n<inline-formula><tex-math>$ 2^{\\boldsymbol{q}}\\mp \\boldsymbol{j}$</tex-math></inline-formula>\n) adders. The analytical and synthesis based evaluations of the proposed modulo-(\n<inline-formula><tex-math>$ 2^{\\boldsymbol{q}}\\mp \\boldsymbol{j}$</tex-math></inline-formula>\n) adders show that the delay-balance of \n<inline-formula><tex-math>$ \\mathbf{\\tau}$</tex-math></inline-formula>\n is preserved with no cost overhead vs. \n<inline-formula><tex-math>$ \\mathbf{\\phi}$</tex-math></inline-formula>\n. In particular, the binary-to-complex and complex-to-binary convertors are merely cost-free and immediate.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"316-324"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10680467/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Moduli-set $ \mathbf{\tau}=\{2^{\boldsymbol{q}},2^{\boldsymbol{q}}\pm 1\}$ is often the base of choice for realization of digital computations via residue number systems. The optimum arithmetic performance in parallel residue channels, is generally achieved via equal bit-width residues (e.g., $ \boldsymbol{q}~ \mathbf{i}\mathbf{n}~ \mathbf{\tau}$ ) that usually leads to equal computation speed within all the residue channels. However, the commonly difficult and costly task of reverse conversion (RC) is often eased in the existence of conjugate moduli. For example, $ 2^{\boldsymbol{q}}\mp 1\in \mathbf{\tau}$ , lead to the efficient modulo-( $ 2^{2\boldsymbol{q}}-1$ ) addition, as the bulk of $ \mathbf{\tau}$ -RC, via the New-CRT reverse conversion method. Nevertheless, for additional dynamic range, $ \mathbf{\tau}$ is augmented with other moduli. In particular, $ \mathbf{\phi}=\mathbf{\tau}\cup \{2^{2\boldsymbol{q}}+1\}$ , leads to efficient RC, where the added modulo is conjugate with the product $ 2^{2\boldsymbol{q}}-1$ of $ 2^{\boldsymbol{q}}\mp 1\in \mathbf{\tau}$ . Therefore, the final step of $ \mathbf{\phi}$ -RC would be fast and low cost/power modulo-( $ 2^{4\boldsymbol{q}}-1$ ) addition. However, the $ 2\boldsymbol{q}$ -bit channel-width jeopardizes the existing delay-balance in $ \mathbf{\tau}$ . As a remedial solution, given that $ 2^{2\boldsymbol{q}}+1=\left(2^{\boldsymbol{q}}-\boldsymbol{j}\right)\left(2^{\boldsymbol{q}}+\boldsymbol{j}\right)$ , with $ \boldsymbol{j}=\sqrt{-1}$ , we design and implement modulo-( $ 2^{2\boldsymbol{q}}+1$ ) adders via two parallel $ \boldsymbol{q}$ -bit moduli-( $ 2^{\boldsymbol{q}}\mp \boldsymbol{j}$ ) adders. The analytical and synthesis based evaluations of the proposed modulo-( $ 2^{\boldsymbol{q}}\mp \boldsymbol{j}$ ) adders show that the delay-balance of $ \mathbf{\tau}$ is preserved with no cost overhead vs. $ \mathbf{\phi}$ . In particular, the binary-to-complex and complex-to-binary convertors are merely cost-free and immediate.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信