Davide Galli;Francesco Lattari;Matteo Matteucci;Davide Zoni
{"title":"A Deep Learning-Assisted Template Attack Against Dynamic Frequency Scaling Countermeasures","authors":"Davide Galli;Francesco Lattari;Matteo Matteucci;Davide Zoni","doi":"10.1109/TC.2024.3477997","DOIUrl":null,"url":null,"abstract":"In the last decades, machine learning techniques have been extensively used in place of classical template attacks to implement profiled side-channel analysis. This manuscript focuses on the application of machine learning to counteract Dynamic Frequency Scaling defenses. While state-of-the-art attacks have shown promising results against desynchronization countermeasures, a robust attack strategy has yet to be realized. Motivated by the simplicity and effectiveness of template attacks for devices lacking desynchronization countermeasures, this work presents a Deep Learning-assisted Template Attack (DLaTA) methodology specifically designed to target highly desynchronized traces through Dynamic Frequency Scaling. A deep learning-based pre-processing step recovers information obscured by desynchronization, followed by a template attack for key extraction. Specifically, we developed a three-stage deep learning pipeline to resynchronize traces to a uniform reference clock frequency. The experimental results on the AES cryptosystem executed on a RISC-V System-on-Chip reported a Guessing Entropy equal to 1 and a Guessing Distance greater than 0.25. Results demonstrate the method's ability to successfully retrieve secret keys even in the presence of high desynchronization. As an additional contribution, we publicly release our \n<monospace>DFS_DESYNCH</monospace>\n database\n<xref><sup>1</sup></xref>\n<fn><label><sup>1</sup></label><p><uri>https://github.com/hardware-fab/DLaTA</uri></p></fn>\n containing the first set of real-world highly desynchronized power traces from the execution of a software AES cryptosystem.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"293-306"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713265","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713265/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In the last decades, machine learning techniques have been extensively used in place of classical template attacks to implement profiled side-channel analysis. This manuscript focuses on the application of machine learning to counteract Dynamic Frequency Scaling defenses. While state-of-the-art attacks have shown promising results against desynchronization countermeasures, a robust attack strategy has yet to be realized. Motivated by the simplicity and effectiveness of template attacks for devices lacking desynchronization countermeasures, this work presents a Deep Learning-assisted Template Attack (DLaTA) methodology specifically designed to target highly desynchronized traces through Dynamic Frequency Scaling. A deep learning-based pre-processing step recovers information obscured by desynchronization, followed by a template attack for key extraction. Specifically, we developed a three-stage deep learning pipeline to resynchronize traces to a uniform reference clock frequency. The experimental results on the AES cryptosystem executed on a RISC-V System-on-Chip reported a Guessing Entropy equal to 1 and a Guessing Distance greater than 0.25. Results demonstrate the method's ability to successfully retrieve secret keys even in the presence of high desynchronization. As an additional contribution, we publicly release our
DFS_DESYNCH
database
1
https://github.com/hardware-fab/DLaTA
containing the first set of real-world highly desynchronized power traces from the execution of a software AES cryptosystem.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.