A Deep Learning-Assisted Template Attack Against Dynamic Frequency Scaling Countermeasures

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Davide Galli;Francesco Lattari;Matteo Matteucci;Davide Zoni
{"title":"A Deep Learning-Assisted Template Attack Against Dynamic Frequency Scaling Countermeasures","authors":"Davide Galli;Francesco Lattari;Matteo Matteucci;Davide Zoni","doi":"10.1109/TC.2024.3477997","DOIUrl":null,"url":null,"abstract":"In the last decades, machine learning techniques have been extensively used in place of classical template attacks to implement profiled side-channel analysis. This manuscript focuses on the application of machine learning to counteract Dynamic Frequency Scaling defenses. While state-of-the-art attacks have shown promising results against desynchronization countermeasures, a robust attack strategy has yet to be realized. Motivated by the simplicity and effectiveness of template attacks for devices lacking desynchronization countermeasures, this work presents a Deep Learning-assisted Template Attack (DLaTA) methodology specifically designed to target highly desynchronized traces through Dynamic Frequency Scaling. A deep learning-based pre-processing step recovers information obscured by desynchronization, followed by a template attack for key extraction. Specifically, we developed a three-stage deep learning pipeline to resynchronize traces to a uniform reference clock frequency. The experimental results on the AES cryptosystem executed on a RISC-V System-on-Chip reported a Guessing Entropy equal to 1 and a Guessing Distance greater than 0.25. Results demonstrate the method's ability to successfully retrieve secret keys even in the presence of high desynchronization. As an additional contribution, we publicly release our \n<monospace>DFS_DESYNCH</monospace>\n database\n<xref><sup>1</sup></xref>\n<fn><label><sup>1</sup></label><p><uri>https://github.com/hardware-fab/DLaTA</uri></p></fn>\n containing the first set of real-world highly desynchronized power traces from the execution of a software AES cryptosystem.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"293-306"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713265","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713265/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In the last decades, machine learning techniques have been extensively used in place of classical template attacks to implement profiled side-channel analysis. This manuscript focuses on the application of machine learning to counteract Dynamic Frequency Scaling defenses. While state-of-the-art attacks have shown promising results against desynchronization countermeasures, a robust attack strategy has yet to be realized. Motivated by the simplicity and effectiveness of template attacks for devices lacking desynchronization countermeasures, this work presents a Deep Learning-assisted Template Attack (DLaTA) methodology specifically designed to target highly desynchronized traces through Dynamic Frequency Scaling. A deep learning-based pre-processing step recovers information obscured by desynchronization, followed by a template attack for key extraction. Specifically, we developed a three-stage deep learning pipeline to resynchronize traces to a uniform reference clock frequency. The experimental results on the AES cryptosystem executed on a RISC-V System-on-Chip reported a Guessing Entropy equal to 1 and a Guessing Distance greater than 0.25. Results demonstrate the method's ability to successfully retrieve secret keys even in the presence of high desynchronization. As an additional contribution, we publicly release our DFS_DESYNCH database 1

https://github.com/hardware-fab/DLaTA

containing the first set of real-world highly desynchronized power traces from the execution of a software AES cryptosystem.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信