Balancing Privacy and Accuracy Using Significant Gradient Protection in Federated Learning

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Benteng Zhang;Yingchi Mao;Xiaoming He;Huawei Huang;Jie Wu
{"title":"Balancing Privacy and Accuracy Using Significant Gradient Protection in Federated Learning","authors":"Benteng Zhang;Yingchi Mao;Xiaoming He;Huawei Huang;Jie Wu","doi":"10.1109/TC.2024.3477971","DOIUrl":null,"url":null,"abstract":"Previous state-of-the-art studies have demonstrated that adversaries can access sensitive user data by membership inference attacks (MIAs) in Federated Learning (FL). Introducing differential privacy (DP) into the FL framework is an effective way to enhance the privacy of FL. Nevertheless, in differentially private federated learning (DP-FL), local gradients become excessively sparse in certain training rounds. Especially when training with low privacy budgets, there is a risk of introducing excessive noise into clients’ gradients. This issue can lead to a significant degradation in the accuracy of the global model. Thus, how to balance the user's privacy and global model accuracy becomes a challenge in DP-FL. To this end, we propose an approach, known as differential privacy federated aggregation, based on significant gradient protection (DP-FedASGP). DP-FedASGP can mitigate excessive noises by protecting significant gradients and accelerate the convergence of the global model by calculating dynamic aggregation weights for gradients. Experimental results show that DP-FedASGP achieves comparable privacy protection effects to DP-FedAvg and cpSGD (communication-private SGD based on gradient quantization) but outperforms DP-FedSNLC (sparse noise based on clipping losses and privacy budget costs) and FedSMP (sparsified model perturbation). Furthermore, the average global test accuracy of DP-FedASGP across four datasets and three models is about \n<inline-formula><tex-math>$2.62$</tex-math></inline-formula>\n%, \n<inline-formula><tex-math>$4.71$</tex-math></inline-formula>\n%, \n<inline-formula><tex-math>$0.45$</tex-math></inline-formula>\n%, and \n<inline-formula><tex-math>$0.19$</tex-math></inline-formula>\n% higher than the above methods, respectively. These improvements indicate that DP-FedASGP is a promising approach for balancing the privacy and accuracy of DP-FL.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"278-292"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713222/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Previous state-of-the-art studies have demonstrated that adversaries can access sensitive user data by membership inference attacks (MIAs) in Federated Learning (FL). Introducing differential privacy (DP) into the FL framework is an effective way to enhance the privacy of FL. Nevertheless, in differentially private federated learning (DP-FL), local gradients become excessively sparse in certain training rounds. Especially when training with low privacy budgets, there is a risk of introducing excessive noise into clients’ gradients. This issue can lead to a significant degradation in the accuracy of the global model. Thus, how to balance the user's privacy and global model accuracy becomes a challenge in DP-FL. To this end, we propose an approach, known as differential privacy federated aggregation, based on significant gradient protection (DP-FedASGP). DP-FedASGP can mitigate excessive noises by protecting significant gradients and accelerate the convergence of the global model by calculating dynamic aggregation weights for gradients. Experimental results show that DP-FedASGP achieves comparable privacy protection effects to DP-FedAvg and cpSGD (communication-private SGD based on gradient quantization) but outperforms DP-FedSNLC (sparse noise based on clipping losses and privacy budget costs) and FedSMP (sparsified model perturbation). Furthermore, the average global test accuracy of DP-FedASGP across four datasets and three models is about $2.62$ %, $4.71$ %, $0.45$ %, and $0.19$ % higher than the above methods, respectively. These improvements indicate that DP-FedASGP is a promising approach for balancing the privacy and accuracy of DP-FL.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信