Stream: Design Space Exploration of Layer-Fused DNNs on Heterogeneous Dataflow Accelerators

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Arne Symons;Linyan Mei;Steven Colleman;Pouya Houshmand;Sebastian Karl;Marian Verhelst
{"title":"Stream: Design Space Exploration of Layer-Fused DNNs on Heterogeneous Dataflow Accelerators","authors":"Arne Symons;Linyan Mei;Steven Colleman;Pouya Houshmand;Sebastian Karl;Marian Verhelst","doi":"10.1109/TC.2024.3477938","DOIUrl":null,"url":null,"abstract":"As the landscape of deep neural networks evolves, heterogeneous dataflow accelerators, in the form of multi-core architectures or chiplet-based designs, promise more flexibility and higher inference performance through scalability. So far, these systems exploit the increased parallelism by coarsely mapping a single layer at a time across cores, which incurs frequent costly off-chip memory accesses, or by pipelining batches of inputs, which falls short in meeting the demands of latency-critical applications. To alleviate these bottlenecks, this work explores a new fine-grain mapping paradigm, referred to as layer fusion, on heterogeneous dataflow accelerators through a novel design space exploration framework called \n<i>Stream</i>\n. \n<i>Stream</i>\n captures a wide variety of heterogeneous dataflow architectures and mapping granularities, and implements a memory and communication-aware latency and energy analysis validated with three distinct state-of-the-art hardware implementations. As such, it facilitates a holistic exploration of architecture and mapping, by strategically allocating the workload through constraint optimization. The findings demonstrate that the integration of layer fusion with heterogeneous dataflow accelerators yields up to \n<inline-formula><tex-math>$2.2\\times$</tex-math></inline-formula>\n lower energy-delay product in inference efficiency, addressing both energy consumption and latency concerns. The framework is available open-source at: github.com/kuleuven-micas/stream.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"237-249"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713407/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

As the landscape of deep neural networks evolves, heterogeneous dataflow accelerators, in the form of multi-core architectures or chiplet-based designs, promise more flexibility and higher inference performance through scalability. So far, these systems exploit the increased parallelism by coarsely mapping a single layer at a time across cores, which incurs frequent costly off-chip memory accesses, or by pipelining batches of inputs, which falls short in meeting the demands of latency-critical applications. To alleviate these bottlenecks, this work explores a new fine-grain mapping paradigm, referred to as layer fusion, on heterogeneous dataflow accelerators through a novel design space exploration framework called Stream . Stream captures a wide variety of heterogeneous dataflow architectures and mapping granularities, and implements a memory and communication-aware latency and energy analysis validated with three distinct state-of-the-art hardware implementations. As such, it facilitates a holistic exploration of architecture and mapping, by strategically allocating the workload through constraint optimization. The findings demonstrate that the integration of layer fusion with heterogeneous dataflow accelerators yields up to $2.2\times$ lower energy-delay product in inference efficiency, addressing both energy consumption and latency concerns. The framework is available open-source at: github.com/kuleuven-micas/stream.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信