{"title":"Optoelectrical Dynamic of Perovskite Solar Cells Under Perovskite and Electron Transport Layer Crystallinity Effect","authors":"Akrajas Ali Umar;P. Susthita Menon","doi":"10.1109/TMAT.2024.3501212","DOIUrl":null,"url":null,"abstract":"This paper discusses a specific case regarding how the behavior of the perovskite lattice and the crystallinity properties of the electron transport layer (ETL) impact the photoelectrical dynamics in perovskite solar cells (PSCs). While many factors influence this photovoltaic process, including the properties of the perovskite layer, ETL, hole transport layer (HTL), and the interfacial properties between these components, the fundamental phenomena occurring within each layer are quite similar. By examining the properties of the perovskite layer and ETL, we can gain valuable insights into how they collectively influence the transport of photogenerated carriers in PSCs. This brief review aims to shed light on these key aspects, thus catalyzing efforts to enhance the performance of perovskite solar cells. Understanding the underlying dynamics at play will enable researchers to devise more targeted strategies to optimize PSCs, ultimately realizing their full potential in renewable energy applications.","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"1 ","pages":"194-210"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Materials for Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10756512/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper discusses a specific case regarding how the behavior of the perovskite lattice and the crystallinity properties of the electron transport layer (ETL) impact the photoelectrical dynamics in perovskite solar cells (PSCs). While many factors influence this photovoltaic process, including the properties of the perovskite layer, ETL, hole transport layer (HTL), and the interfacial properties between these components, the fundamental phenomena occurring within each layer are quite similar. By examining the properties of the perovskite layer and ETL, we can gain valuable insights into how they collectively influence the transport of photogenerated carriers in PSCs. This brief review aims to shed light on these key aspects, thus catalyzing efforts to enhance the performance of perovskite solar cells. Understanding the underlying dynamics at play will enable researchers to devise more targeted strategies to optimize PSCs, ultimately realizing their full potential in renewable energy applications.