Investigation on the role of nitrates in the microwave-assisted autoclave Pechini synthesis of aluminoborate phosphors†

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jérémy Cathalan, Mathieu Salaün, Audrey Potdevin, François Réveret, Geneviève Chadeyron and Isabelle Gautier-Luneau
{"title":"Investigation on the role of nitrates in the microwave-assisted autoclave Pechini synthesis of aluminoborate phosphors†","authors":"Jérémy Cathalan, Mathieu Salaün, Audrey Potdevin, François Réveret, Geneviève Chadeyron and Isabelle Gautier-Luneau","doi":"10.1039/D4TC02300E","DOIUrl":null,"url":null,"abstract":"<p >Aluminoborate (AB) powder prepared by the Pechini method is a promising rare earth-free phosphor for white light emitting diodes applications. The photoluminescence emission is attributed to organic molecules, polycyclic aromatic hydrocarbons, trapped in the inorganic matrix. We discuss the replacement of the usual reflux heating of the Pechini synthesis by an autoclave microwave-assisted step. Morphological and structural properties seem not changed by the evolution of the heating method while the emission under UV and blue excitation (385–450 nm) are improved in terms of bandwidth and external quantum yield. The main difference between the reflux and the microwave-assisted autoclave heating is that the NO<small><sub><em>x</em></sub></small> gases provided by aluminium nitrate precursor are not evacuated from the reactional medium with this latter. From this statement, the role of the nitrate in the precursors has been investigated. The optical, structural and thermal properties of aluminoborate powders with nitrate (<small><sup>15</sup></small>N nitrogen labelling) or without nitrate are described. In particular, thanks to <small><sup>15</sup></small>N labelling, thermogravimetric analysis coupled to mass spectrometry and the study of the fluorescence decays suggest the presence of nitrogenous compounds in the composition of the polycyclic aromatic hydrocarbons emitting centres.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19603-19611"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02300e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminoborate (AB) powder prepared by the Pechini method is a promising rare earth-free phosphor for white light emitting diodes applications. The photoluminescence emission is attributed to organic molecules, polycyclic aromatic hydrocarbons, trapped in the inorganic matrix. We discuss the replacement of the usual reflux heating of the Pechini synthesis by an autoclave microwave-assisted step. Morphological and structural properties seem not changed by the evolution of the heating method while the emission under UV and blue excitation (385–450 nm) are improved in terms of bandwidth and external quantum yield. The main difference between the reflux and the microwave-assisted autoclave heating is that the NOx gases provided by aluminium nitrate precursor are not evacuated from the reactional medium with this latter. From this statement, the role of the nitrate in the precursors has been investigated. The optical, structural and thermal properties of aluminoborate powders with nitrate (15N nitrogen labelling) or without nitrate are described. In particular, thanks to 15N labelling, thermogravimetric analysis coupled to mass spectrometry and the study of the fluorescence decays suggest the presence of nitrogenous compounds in the composition of the polycyclic aromatic hydrocarbons emitting centres.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信