{"title":"Electrorheological fluids: A living review","authors":"Lenka Munteanu, Andrei Munteanu, Michal Sedlacik","doi":"10.1016/j.pmatsci.2024.101421","DOIUrl":null,"url":null,"abstract":"Electrorheological (ER) materials have attracted considerable attention over the decades, owning to their unique ability to rapidly change their rheological properties upon exposure to an electric field. Such feature enables these materials in numerous applications. This paper reviews the general aspects of electrorheological fluids (ERFs), and introduces the most often used ER materials. Liquid carriers are briefly compared and numerous dispersed dielectric particles are represented from both, inorganic and organic categories, along with a wide range of composites. A selection of reviewed ERF particles characteristics (their type, geometry, size, conductivity and ER efficiency) is summarized in tables. Advantages and drawbacks of state-of-the-art ERFs are outlined, along with their general requirements. Additionally, an open living online document is attached and meant to keep a summary of the key characteristics of ER particles covered in future ERF-focused publications and create a rich online resource for the scientific community over time. Fellow researchers are therefore welcomed to contact the authors for their published data to be included (the open living table is to be updated regularly).","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"28 1","pages":""},"PeriodicalIF":33.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.pmatsci.2024.101421","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrorheological (ER) materials have attracted considerable attention over the decades, owning to their unique ability to rapidly change their rheological properties upon exposure to an electric field. Such feature enables these materials in numerous applications. This paper reviews the general aspects of electrorheological fluids (ERFs), and introduces the most often used ER materials. Liquid carriers are briefly compared and numerous dispersed dielectric particles are represented from both, inorganic and organic categories, along with a wide range of composites. A selection of reviewed ERF particles characteristics (their type, geometry, size, conductivity and ER efficiency) is summarized in tables. Advantages and drawbacks of state-of-the-art ERFs are outlined, along with their general requirements. Additionally, an open living online document is attached and meant to keep a summary of the key characteristics of ER particles covered in future ERF-focused publications and create a rich online resource for the scientific community over time. Fellow researchers are therefore welcomed to contact the authors for their published data to be included (the open living table is to be updated regularly).
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.