Synthesis, Characterization, and Biomedical Applications of Bacteriocin-Selenium Nanoconjugates.

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sana M H Al-Shimmary, Amina N Al-Thwani
{"title":"Synthesis, Characterization, and Biomedical Applications of Bacteriocin-Selenium Nanoconjugates.","authors":"Sana M H Al-Shimmary, Amina N Al-Thwani","doi":"10.1007/s12602-024-10420-2","DOIUrl":null,"url":null,"abstract":"<p><p>The antibiotic overuse in hospitals, the food industry, and animal feed over past times has led to a significant rise in the incidence of antibiotic-resistant bacteria. To address these potentially life-threatening antibiotic-resistant illnesses, a quick identification and development of novel antimicrobials are necessary. The aim of this study was to synthesize a novel bacteriocin-nanoconjugates by combining selenium nanoparticles with purified bacteriocin from the Enterococcus faecium SMAA23 and investigate some of its biomedical activities. The nanoconjugates were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray desorption (EDX), and zeta potential analytical techniques. There is investigation of the antibacterial, antifungal, and anticancer properties of nanoconjugates. Purified bacteriocin has a known molecular weight of approximately 43,000 Daltons. The characterization of nanoparticles and nanoconjugates was performed. The crystallite size of nanoconjugate was determined via X-ray diffraction (XRD) to be 15.29 nm. Transmission electron microscopy (TEM) detected particles of irregular form of nanoconjugate, measuring between 11 and 24 nm in diameter. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of selenium and protein. The measured zeta potential was - 12.1 + 0.12 mV. The results revealed potent antibacterial activity against Acinetobacter baumannii, with a growth inhibition zone of 23 mm ± SD. A minimum inhibitory concentration (MIC) of nanoconjugate was 15.625 µg/mL, while a minimum bactericidal concentration (MBC) was 31.25 µg/mL. The application of scanning electron microscopy (SEM) enhanced the rupture of the bacterial cell wall. The antifungal activity against C. albicans and C. tropicalis resulted in growth inhibition zones of 14 mm and 16 mm (± SD), respectively. Various concentrations of the nanoconjugate strongly inhibited MDA-MB-231 cells in the MTT experiment. The novel synthesized bacteriocin-nanoconjugates exhibited substantial antibacterial, antifungal, and anticancer properties.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10420-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The antibiotic overuse in hospitals, the food industry, and animal feed over past times has led to a significant rise in the incidence of antibiotic-resistant bacteria. To address these potentially life-threatening antibiotic-resistant illnesses, a quick identification and development of novel antimicrobials are necessary. The aim of this study was to synthesize a novel bacteriocin-nanoconjugates by combining selenium nanoparticles with purified bacteriocin from the Enterococcus faecium SMAA23 and investigate some of its biomedical activities. The nanoconjugates were characterized via X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray desorption (EDX), and zeta potential analytical techniques. There is investigation of the antibacterial, antifungal, and anticancer properties of nanoconjugates. Purified bacteriocin has a known molecular weight of approximately 43,000 Daltons. The characterization of nanoparticles and nanoconjugates was performed. The crystallite size of nanoconjugate was determined via X-ray diffraction (XRD) to be 15.29 nm. Transmission electron microscopy (TEM) detected particles of irregular form of nanoconjugate, measuring between 11 and 24 nm in diameter. Energy dispersive X-ray spectroscopy (EDX) confirmed the presence of selenium and protein. The measured zeta potential was - 12.1 + 0.12 mV. The results revealed potent antibacterial activity against Acinetobacter baumannii, with a growth inhibition zone of 23 mm ± SD. A minimum inhibitory concentration (MIC) of nanoconjugate was 15.625 µg/mL, while a minimum bactericidal concentration (MBC) was 31.25 µg/mL. The application of scanning electron microscopy (SEM) enhanced the rupture of the bacterial cell wall. The antifungal activity against C. albicans and C. tropicalis resulted in growth inhibition zones of 14 mm and 16 mm (± SD), respectively. Various concentrations of the nanoconjugate strongly inhibited MDA-MB-231 cells in the MTT experiment. The novel synthesized bacteriocin-nanoconjugates exhibited substantial antibacterial, antifungal, and anticancer properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信