{"title":"Quality Controls: The Role of Self-Corrective Science in Explorations of Primate Memory Systems","authors":"Elisabeth A. Murray","doi":"10.1002/hipo.23667","DOIUrl":null,"url":null,"abstract":"<p>In 1978, Mort Mishkin published a landmark paper describing a monkey model of H.M.'s dense, global amnesia. It depended on a combined removal of the amygdala and hippocampus (the A + H lesion) and a memory test called delayed nonmatching-to-sample (DNMS). My first project examined whether the impairment Mishkin had found in visual memory generalized to tactual stimuli. However, to gain access to the hippocampus and amygdala with 1980s surgical methods, we had to remove the underlying cortex. When we were able to test the effects of bilateral removal of that underlying cortex (the entorhinal and perirhinal cortex, or “rhinal cortex” for short) we obtained a dramatic result. This so-called “control” lesion caused a profound impairment on the DNMS task. A few years later, excitotoxic A + H lesions, which left the rhinal cortex intact, confirmed that removal of the cortical “impediments” had caused the entire memory impairment that Mishkin had observed. These results: (1) forced a reconsideration of the monkey model of global anterograde amnesia; (2) spurred study of the independent contributions of the amygdala, hippocampus, and perirhinal cortex to cognition; and (3) led to the realization that the DNMS task did not test the kinds of memory that H.M. lost after his surgery.</p>","PeriodicalId":13171,"journal":{"name":"Hippocampus","volume":"35 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hippocampus","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hipo.23667","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In 1978, Mort Mishkin published a landmark paper describing a monkey model of H.M.'s dense, global amnesia. It depended on a combined removal of the amygdala and hippocampus (the A + H lesion) and a memory test called delayed nonmatching-to-sample (DNMS). My first project examined whether the impairment Mishkin had found in visual memory generalized to tactual stimuli. However, to gain access to the hippocampus and amygdala with 1980s surgical methods, we had to remove the underlying cortex. When we were able to test the effects of bilateral removal of that underlying cortex (the entorhinal and perirhinal cortex, or “rhinal cortex” for short) we obtained a dramatic result. This so-called “control” lesion caused a profound impairment on the DNMS task. A few years later, excitotoxic A + H lesions, which left the rhinal cortex intact, confirmed that removal of the cortical “impediments” had caused the entire memory impairment that Mishkin had observed. These results: (1) forced a reconsideration of the monkey model of global anterograde amnesia; (2) spurred study of the independent contributions of the amygdala, hippocampus, and perirhinal cortex to cognition; and (3) led to the realization that the DNMS task did not test the kinds of memory that H.M. lost after his surgery.
期刊介绍:
Hippocampus provides a forum for the exchange of current information between investigators interested in the neurobiology of the hippocampal formation and related structures. While the relationships of submitted papers to the hippocampal formation will be evaluated liberally, the substance of appropriate papers should deal with the hippocampal formation per se or with the interaction between the hippocampal formation and other brain regions. The scope of Hippocampus is wide: single and multidisciplinary experimental studies from all fields of basic science, theoretical papers, papers dealing with hippocampal preparations as models for understanding the central nervous system, and clinical studies will be considered for publication. The Editor especially encourages the submission of papers that contribute to a functional understanding of the hippocampal formation.