Contributions of Hemolytic Proteins in Virulent Aeromonas hydrophila to Motile Aeromonas Septicemia Disease of Channel Catfish (Ictalurus punctatus).

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Dunhua Zhang, Jun Feng, Yi Wang, Craig A Shoemaker, Allison A Wise, Benjamin H Beck
{"title":"Contributions of Hemolytic Proteins in Virulent Aeromonas hydrophila to Motile Aeromonas Septicemia Disease of Channel Catfish (Ictalurus punctatus).","authors":"Dunhua Zhang, Jun Feng, Yi Wang, Craig A Shoemaker, Allison A Wise, Benjamin H Beck","doi":"10.1093/femsle/fnae108","DOIUrl":null,"url":null,"abstract":"<p><p>Hemolytic proteins are a major group of virulence factors in pathogenic Aeromonas hydrophila. Six genes encoding presumable hemolytic proteins were revealed from the genome of virulent A. hydrophila (vAh) that caused severe disease in channel catfish. The aim of this study was to assess the contribution of these hemolytic proteins to the virulence of this bacterium. Genes coding for following six proteins were investigated: aerolysin (Arl), 21-kDa hemolysin (Hly1), thermostable hemolysin (Hly2), phospholipase/lecithinase-related hemolysin (Hly3), membrane-associated hemolysin III (Hly4), and cytolysin-associated hemolysin (Hly5). Individual genes were deleted from the bacterium using CRISPR-Cas9 mediated methods. Assessment showed that deletion of Arl gene (Δarl) completely abolished hemolytic activity of this mutant while Δhly1-Δhly5 mutants had the same activity as the wild vAh. Extracellular proteins (ECP) of the Δarl mutant caused significantly (p < 0.01) less cell death in vitro with viability increased by approximately 20%, compared to the wild vAh. ECPs of mutants Δhly1-Δhly5 remained the same cell toxicity as the wild vAh. A second deletion of hly5 from the Δarl mutant further lowered the cell toxicity of the ECP of the mutant (Δarl+Δhly5). Assays in vivo showed that both Δarl and Δhly5 mutants caused less fish mortality with reduction of 57% and 16%, respectively, compared to the wild vAh; the Δarl+Δhly5 mutant caused the least mortality with approximately 87% of reduction; and other mutants had the same virulence as the wild vAh. Analyses of SDS-PAGE and Western blotting evidently indicate that both Arl and Hly5 proteins formed hexamer-like stable structures post secretion from the bacterium. Arl and Hly5 apparently had synergistic action in cytotoxicity and causing disease and were the major virulence factors among the six hemolytic proteins analyzed in this study.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae108","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hemolytic proteins are a major group of virulence factors in pathogenic Aeromonas hydrophila. Six genes encoding presumable hemolytic proteins were revealed from the genome of virulent A. hydrophila (vAh) that caused severe disease in channel catfish. The aim of this study was to assess the contribution of these hemolytic proteins to the virulence of this bacterium. Genes coding for following six proteins were investigated: aerolysin (Arl), 21-kDa hemolysin (Hly1), thermostable hemolysin (Hly2), phospholipase/lecithinase-related hemolysin (Hly3), membrane-associated hemolysin III (Hly4), and cytolysin-associated hemolysin (Hly5). Individual genes were deleted from the bacterium using CRISPR-Cas9 mediated methods. Assessment showed that deletion of Arl gene (Δarl) completely abolished hemolytic activity of this mutant while Δhly1-Δhly5 mutants had the same activity as the wild vAh. Extracellular proteins (ECP) of the Δarl mutant caused significantly (p < 0.01) less cell death in vitro with viability increased by approximately 20%, compared to the wild vAh. ECPs of mutants Δhly1-Δhly5 remained the same cell toxicity as the wild vAh. A second deletion of hly5 from the Δarl mutant further lowered the cell toxicity of the ECP of the mutant (Δarl+Δhly5). Assays in vivo showed that both Δarl and Δhly5 mutants caused less fish mortality with reduction of 57% and 16%, respectively, compared to the wild vAh; the Δarl+Δhly5 mutant caused the least mortality with approximately 87% of reduction; and other mutants had the same virulence as the wild vAh. Analyses of SDS-PAGE and Western blotting evidently indicate that both Arl and Hly5 proteins formed hexamer-like stable structures post secretion from the bacterium. Arl and Hly5 apparently had synergistic action in cytotoxicity and causing disease and were the major virulence factors among the six hemolytic proteins analyzed in this study.

嗜水气单胞菌毒力溶血蛋白在海峡鲶鱼运动性气单胞菌败血症中的作用。
溶血蛋白是致病性嗜水气单胞菌的主要毒力因子。从引起通道鲶鱼严重疾病的毒力嗜水A. (vAh)基因组中发现了6个编码可能溶血蛋白的基因。本研究的目的是评估这些溶血蛋白对这种细菌的毒力的贡献。研究了航空溶血素(Arl)、21-kDa溶血素(Hly1)、耐热溶血素(Hly2)、磷脂酶/卵磷脂酶相关溶血素(Hly3)、膜相关溶血素III (Hly4)和细胞溶血素相关溶血素(Hly5)等6种蛋白的基因编码。使用CRISPR-Cas9介导的方法从细菌中删除单个基因。评估表明,Arl基因(Δarl)的缺失完全消除了该突变体的溶血活性,而Δhly1-Δhly5突变体与野生vAh具有相同的活性。Δarl突变体的细胞外蛋白(ECP)显著(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信