Jianyue Ge, Xueyao Lu, Cancan Liu, Wei Liu, Na Wu, Bingxuan Feng, Xiaoman Sun, Yang Gu
{"title":"Multimodule Synthetic Redesign of Intracellular Metabolisms for the High-Titer de Novo Production of Sakuranetin in Yarrowia lipolytica","authors":"Jianyue Ge, Xueyao Lu, Cancan Liu, Wei Liu, Na Wu, Bingxuan Feng, Xiaoman Sun, Yang Gu","doi":"10.1021/acs.jafc.4c09625","DOIUrl":null,"url":null,"abstract":"Sakuranetin, a flavonoid phytoalexin, has demonstrated neuroprotective properties and exhibits tyrosinase inhibitory activities, making it highly valuable in the cosmetics and pharmaceutical industries. In this study, we engineered a <i>Yarrowia lipolytica</i> strain for the high-titer de novo production of sakuranetin using glucose as a substrate. To effectively enhance sakuranetin production, we implemented a multimodule engineering strategy that included optimizing the sakuranetin synthesis pathway, designing a regeneration system for the methyl donor S-adenosyl methionine, increasing the malonyl-CoA precursor supplement, and constructing the feedback inhibition-relieved shikimate pathway. Moreover, a transcriptomic analysis was conducted to identify potential targets for further improving sakuranetin synthesis. As a result, the titer of de novo synthesized sakuranetin reached 344.0 mg/L from glucose in a 5 L bioreactor. These achievements hold significant promise for the sustainable and large-scale production of sakuranetin through industrial biomanufacturing.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"8 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c09625","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sakuranetin, a flavonoid phytoalexin, has demonstrated neuroprotective properties and exhibits tyrosinase inhibitory activities, making it highly valuable in the cosmetics and pharmaceutical industries. In this study, we engineered a Yarrowia lipolytica strain for the high-titer de novo production of sakuranetin using glucose as a substrate. To effectively enhance sakuranetin production, we implemented a multimodule engineering strategy that included optimizing the sakuranetin synthesis pathway, designing a regeneration system for the methyl donor S-adenosyl methionine, increasing the malonyl-CoA precursor supplement, and constructing the feedback inhibition-relieved shikimate pathway. Moreover, a transcriptomic analysis was conducted to identify potential targets for further improving sakuranetin synthesis. As a result, the titer of de novo synthesized sakuranetin reached 344.0 mg/L from glucose in a 5 L bioreactor. These achievements hold significant promise for the sustainable and large-scale production of sakuranetin through industrial biomanufacturing.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.