Ferroelectric Transistor-Based Synaptic Crossbar Arrays: The Impact of Ferroelectric Thickness and Device-Circuit Interactions

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Chunguang Wang;Sumeet Kumar Gupta
{"title":"Ferroelectric Transistor-Based Synaptic Crossbar Arrays: The Impact of Ferroelectric Thickness and Device-Circuit Interactions","authors":"Chunguang Wang;Sumeet Kumar Gupta","doi":"10.1109/JXCDC.2024.3502053","DOIUrl":null,"url":null,"abstract":"Ferroelectric transistors (FeFETs)-based crossbar arrays have shown immense promise for computing-in-memory (CiM) architectures targeted for neural accelerator designs. Offering CMOS compatibility, nonvolatility, compact bit cell, and CiM-amenable features, such as multilevel storage and voltage-driven conductance tuning, FeFETs are among the foremost candidates for synaptic devices. However, device and circuit nonideal attributes in FeFETs-based crossbar arrays cause the output currents to deviate from the expected value, which can induce error in CiM of matrix-vector multiplications (MVMs). In this article, we analyze the impact of ferroelectric thickness (\n<inline-formula> <tex-math>$T_{\\text {FE}}$ </tex-math></inline-formula>\n) and cross-layer interactions in FeFETs-based synaptic crossbar arrays accounting for device-circuit nonidealities. First, based on a physics-based model of multidomain FeFETs calibrated to experiments, we analyze the impact of \n<inline-formula> <tex-math>$T_{\\text {FE}}$ </tex-math></inline-formula>\n on the characteristics of FeFETs as synaptic devices, highlighting the connections between the multidomain physics and the synaptic attributes. Based on this analysis, we investigate the impact of \n<inline-formula> <tex-math>$T_{\\text {FE}}$ </tex-math></inline-formula>\n in conjunction with other design parameters, such as number of bits stored per device (bit slice), wordline (WL) activation schemes, and FeFETs width on the error probability, area, energy, and latency of CiM at the array level. Our results show that FeFETs with \n<inline-formula> <tex-math>$T_{\\text {FE}}$ </tex-math></inline-formula>\n around 7 nm achieve the highest CiM robustness, while FeFETs with \n<inline-formula> <tex-math>$T_{\\text {FE}}$ </tex-math></inline-formula>\n around 10 nm offer the lowest CiM energy and latency. While the CiM robustness for bit slice 2 is less than bit slice 1, its robustness can be brought to a target level via additional design techniques, such as partial wordline activation and optimization of FeFETs width.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"144-152"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10756727","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10756727/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectric transistors (FeFETs)-based crossbar arrays have shown immense promise for computing-in-memory (CiM) architectures targeted for neural accelerator designs. Offering CMOS compatibility, nonvolatility, compact bit cell, and CiM-amenable features, such as multilevel storage and voltage-driven conductance tuning, FeFETs are among the foremost candidates for synaptic devices. However, device and circuit nonideal attributes in FeFETs-based crossbar arrays cause the output currents to deviate from the expected value, which can induce error in CiM of matrix-vector multiplications (MVMs). In this article, we analyze the impact of ferroelectric thickness ( $T_{\text {FE}}$ ) and cross-layer interactions in FeFETs-based synaptic crossbar arrays accounting for device-circuit nonidealities. First, based on a physics-based model of multidomain FeFETs calibrated to experiments, we analyze the impact of $T_{\text {FE}}$ on the characteristics of FeFETs as synaptic devices, highlighting the connections between the multidomain physics and the synaptic attributes. Based on this analysis, we investigate the impact of $T_{\text {FE}}$ in conjunction with other design parameters, such as number of bits stored per device (bit slice), wordline (WL) activation schemes, and FeFETs width on the error probability, area, energy, and latency of CiM at the array level. Our results show that FeFETs with $T_{\text {FE}}$ around 7 nm achieve the highest CiM robustness, while FeFETs with $T_{\text {FE}}$ around 10 nm offer the lowest CiM energy and latency. While the CiM robustness for bit slice 2 is less than bit slice 1, its robustness can be brought to a target level via additional design techniques, such as partial wordline activation and optimization of FeFETs width.
基于铁电晶体管的突触横杆阵列:铁电厚度和器件电路相互作用的影响
基于铁电晶体管(fefet)的交叉棒阵列在内存计算(CiM)架构中显示出巨大的前景,目标是神经加速器设计。fefet具有CMOS兼容性、非易失性、紧凑的位单元和适合cim的特性,如多电平存储和电压驱动的电导调谐,是突触器件的首选候选器件之一。然而,在基于fet的交叉棒阵列中,器件和电路的非理想属性会导致输出电流偏离期望值,从而导致矩阵向量乘法(MVMs)的CiM误差。在本文中,我们分析了铁电厚度($T_{\text {FE}}$)和考虑器件电路非理想性的基于fet的突触交叉棒阵列中的跨层相互作用的影响。首先,基于实验校准的多域fet物理模型,我们分析了$T_{\text {FE}}$对fet作为突触器件特性的影响,强调了多域物理与突触属性之间的联系。基于此分析,我们研究了$T_{\text {FE}}$与其他设计参数(如每个器件存储的比特数(位片)、字线(WL)激活方案和fet宽度)对阵列级CiM的错误概率、面积、能量和延迟的影响。我们的研究结果表明,$T_{\text {FE}}$约为7 nm的fefet具有最高的CiM鲁棒性,而$T_{\text {FE}}$约为10 nm的fefet具有最低的CiM能量和延迟。虽然位片2的CiM鲁棒性低于位片1,但可以通过额外的设计技术将其鲁棒性提高到目标水平,例如部分字线激活和优化fet宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信