{"title":"Research Progress of Modeling and Simulation of Vacuum Arcs Considering Multicomponents With Different Anode Modes","authors":"Lijun Wang;Jieli Chen;Zhefeng Zhang;Runming Zhang;Cong Wang;Shenli Jia","doi":"10.1109/TPS.2024.3485966","DOIUrl":null,"url":null,"abstract":"Vacuum arc widely appears in vacuum interrupters, ion sources, thrusters, and other related application fields. Understanding the components’ characteristics in vacuum arc is very important for the above application fields. At present, modeling and numerical simulation technology is becoming more and more important for the study of vacuum arc mechanisms. In this article, multicomponent magnetohydrodynamic (MHD) models of vacuum arc with passive and active anode modes will be reviewed, and the commercial alloy electrode materials in vacuum interrupters will be considered. The influence of the spatial magnetic field generated by commercial electrodes on the arc was studied. Furthermore, transient plasma characteristics and component evolution processes of vacuum arcs with different situations (fixed gap distance and electrode movement) in vacuum interrupters are reviewed. Vacuum arc plasma jet characteristics with a ring anode under different external magnetic fields will also be introduced, and the separation mechanisms of light and heavy ions in vacuum arcs will also be studied. Finally, the challenge of vacuum arc modeling in the future is also discussed.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4402-4418"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10754968/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Vacuum arc widely appears in vacuum interrupters, ion sources, thrusters, and other related application fields. Understanding the components’ characteristics in vacuum arc is very important for the above application fields. At present, modeling and numerical simulation technology is becoming more and more important for the study of vacuum arc mechanisms. In this article, multicomponent magnetohydrodynamic (MHD) models of vacuum arc with passive and active anode modes will be reviewed, and the commercial alloy electrode materials in vacuum interrupters will be considered. The influence of the spatial magnetic field generated by commercial electrodes on the arc was studied. Furthermore, transient plasma characteristics and component evolution processes of vacuum arcs with different situations (fixed gap distance and electrode movement) in vacuum interrupters are reviewed. Vacuum arc plasma jet characteristics with a ring anode under different external magnetic fields will also be introduced, and the separation mechanisms of light and heavy ions in vacuum arcs will also be studied. Finally, the challenge of vacuum arc modeling in the future is also discussed.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.