Gianluca Barone;Valerio Belardi;Mauro Dalla Palma;Damiano Paoletti;Gian Mario Polli;Francesco Vivio
{"title":"Structural Assessment of the DTT Cryostat Design","authors":"Gianluca Barone;Valerio Belardi;Mauro Dalla Palma;Damiano Paoletti;Gian Mario Polli;Francesco Vivio","doi":"10.1109/TPS.2024.3455777","DOIUrl":null,"url":null,"abstract":"The article presents the status of DTT cryostat system and illustrates the structural verification activities performed to assess its mechanical response under various design load combinations. To this purpose, an FEM shell model of the cryostat has been developed including mechanical loads on the cryostat base due to Vacuum Vessel and Magnets, modeled as equivalent point mass. Anchoring of the base columns to the Tokamak basements has also been modeled. To verify the cryostat design, simulations have been carried out for the most critical VDEs and seismic load combinations. In addition, thermo-mechanical effects induced by both Vacuum Vessel and Magnets, on the cryostat base, have been investigated, for plasma operation and baking conditions. Further, buckling condition, under external pressure, and accidental overpressure conditions, have also been investigated.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4120-4125"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10713498/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents the status of DTT cryostat system and illustrates the structural verification activities performed to assess its mechanical response under various design load combinations. To this purpose, an FEM shell model of the cryostat has been developed including mechanical loads on the cryostat base due to Vacuum Vessel and Magnets, modeled as equivalent point mass. Anchoring of the base columns to the Tokamak basements has also been modeled. To verify the cryostat design, simulations have been carried out for the most critical VDEs and seismic load combinations. In addition, thermo-mechanical effects induced by both Vacuum Vessel and Magnets, on the cryostat base, have been investigated, for plasma operation and baking conditions. Further, buckling condition, under external pressure, and accidental overpressure conditions, have also been investigated.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.