On the Feasibility of Thallium Bromide in Long-Range Plasmonic Sensing for Enhancement of Performance

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Virendra Kumar;Sarika Pal;Vivek Singh;Bela Goyal;Lalit Kumar Awasthi;Yogendra Kumar Prajapati
{"title":"On the Feasibility of Thallium Bromide in Long-Range Plasmonic Sensing for Enhancement of Performance","authors":"Virendra Kumar;Sarika Pal;Vivek Singh;Bela Goyal;Lalit Kumar Awasthi;Yogendra Kumar Prajapati","doi":"10.1109/TPS.2024.3468954","DOIUrl":null,"url":null,"abstract":"This article introduces a new plasmonic sensor utilizing long range surface plasmon resonance (LRSPR), which is constructed from a heterostructure of thallium bromide (TlBr) along with BluePhosphorene and Tungsten diselenide (BlueP/WSe2). Through meticulous analysis, we systematically investigated the optimal sensor configuration which consists of 8 nm thick silver (Ag) metal layer, a 1900 nm thick Magnesium fluoride (MgF2) dielectric buffer laye (DBL), and a 2-nm thick TlBr layer to enhance the capabilities of the sensor. The achieved configuration of he proposed sensor claims exceptional attributes, including narrower full width at half maximum (FWHM =0.01 Deg.), higher detection accuracy [DA =100 (Deg−1)], imaging figure of merit [IFOM =4410500 (Deg. RIU)−1], imaging sensitivity, (\n<inline-formula> <tex-math>${S} _{\\text {img.}} =44$ </tex-math></inline-formula>\n105 RIU−1), and angular figure of merit (FOM\n<inline-formula> <tex-math>$_{\\text {ang.}} =5814.38$ </tex-math></inline-formula>\n RIU−1). It exhibits significantly improved performance by achieving 38.02, 964.89, 25.39, and 61.40-times higher values of DA, IFOM, \n<inline-formula> <tex-math>${S} _{\\text {img.}}$ </tex-math></inline-formula>\n, and FOMang respectively, as compared to the conventional surface plasmon resonance (CSPR) sensor. Furthermore, the penetration depth (PD) of 989.45 nm of the proposed LRSPR sensor surpasses the PD (210.01 nm) of CSPR sensors, and demonstrates precise and sensitive refractive index (RI) sensing applications in biomedical. Consequently, the proposed sensor offers superior performance over existing LRSPR sensors.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4598-4605"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10709655/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a new plasmonic sensor utilizing long range surface plasmon resonance (LRSPR), which is constructed from a heterostructure of thallium bromide (TlBr) along with BluePhosphorene and Tungsten diselenide (BlueP/WSe2). Through meticulous analysis, we systematically investigated the optimal sensor configuration which consists of 8 nm thick silver (Ag) metal layer, a 1900 nm thick Magnesium fluoride (MgF2) dielectric buffer laye (DBL), and a 2-nm thick TlBr layer to enhance the capabilities of the sensor. The achieved configuration of he proposed sensor claims exceptional attributes, including narrower full width at half maximum (FWHM =0.01 Deg.), higher detection accuracy [DA =100 (Deg−1)], imaging figure of merit [IFOM =4410500 (Deg. RIU)−1], imaging sensitivity, ( ${S} _{\text {img.}} =44$ 105 RIU−1), and angular figure of merit (FOM $_{\text {ang.}} =5814.38$ RIU−1). It exhibits significantly improved performance by achieving 38.02, 964.89, 25.39, and 61.40-times higher values of DA, IFOM, ${S} _{\text {img.}}$ , and FOMang respectively, as compared to the conventional surface plasmon resonance (CSPR) sensor. Furthermore, the penetration depth (PD) of 989.45 nm of the proposed LRSPR sensor surpasses the PD (210.01 nm) of CSPR sensors, and demonstrates precise and sensitive refractive index (RI) sensing applications in biomedical. Consequently, the proposed sensor offers superior performance over existing LRSPR sensors.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信