Investigation in Forced Shifts of Current on the Dynamic Armature and Rail Interface

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Jinghan Xu;Shengguo Xia;Anbang Gu;Lixue Chen;Chengxian Li;Hongdan Yang
{"title":"Investigation in Forced Shifts of Current on the Dynamic Armature and Rail Interface","authors":"Jinghan Xu;Shengguo Xia;Anbang Gu;Lixue Chen;Chengxian Li;Hongdan Yang","doi":"10.1109/TPS.2024.3481051","DOIUrl":null,"url":null,"abstract":"The armature and rail (A/R) interface in railgun is considered a dynamic electrical contact involving contact pressure and area variations, and the extreme working conditions lead to distinct electromagnetic properties from the bulk and perfect contact. This article investigates the mechanical and electromagnetic properties of the dynamic A/R interface based on imperfect contact boundary conditions. The contact area expands as the driving current increases, which increases the current distributed area and enhances uniformity. The current redistribution patterns are identified as forced shifts of current, with currents on the previous contact area boundaries decreasing and those on the existing boundaries increasing sharply. The analysis results indicate that the electric scalar potential difference and contact conductivity dominate the current variations on previous and existing boundaries, respectively. In other words, the conduction current and the contact state are the primary factors causing forced shifts of current rather than the induction current. Furthermore, the influences of dynamic contact conditions on the electric scalar potential difference are studied, and the results indicate that contact area variation has a more significant impact on the electric scalar potential difference. As the contact area changes, the conduction current paths shift with contact area boundaries, which causes variations in electric scalar potential differences, consequently, leading to the phenomenon of forced current shifts.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4727-4734"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10736396/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The armature and rail (A/R) interface in railgun is considered a dynamic electrical contact involving contact pressure and area variations, and the extreme working conditions lead to distinct electromagnetic properties from the bulk and perfect contact. This article investigates the mechanical and electromagnetic properties of the dynamic A/R interface based on imperfect contact boundary conditions. The contact area expands as the driving current increases, which increases the current distributed area and enhances uniformity. The current redistribution patterns are identified as forced shifts of current, with currents on the previous contact area boundaries decreasing and those on the existing boundaries increasing sharply. The analysis results indicate that the electric scalar potential difference and contact conductivity dominate the current variations on previous and existing boundaries, respectively. In other words, the conduction current and the contact state are the primary factors causing forced shifts of current rather than the induction current. Furthermore, the influences of dynamic contact conditions on the electric scalar potential difference are studied, and the results indicate that contact area variation has a more significant impact on the electric scalar potential difference. As the contact area changes, the conduction current paths shift with contact area boundaries, which causes variations in electric scalar potential differences, consequently, leading to the phenomenon of forced current shifts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信