{"title":"Thermoelectric power generation in concrete: A study on influential material and structural factors","authors":"Yong Luo, Hai Liu","doi":"10.1016/j.enbuild.2024.115159","DOIUrl":null,"url":null,"abstract":"This study presents an innovative design for a concrete-based energy harvesting system, focusing on ordinary concrete, steel fiber concrete, and bamboo fiber concrete to identify the most effective material for power generation and efficiency improvement. The temperature transfer characteristics and output voltage of each concrete type are examined in detail. Simulation analyses assess how ambient temperature, wind speed, and the embedding depth of conductive aluminum plates affect the system’s temperature field and output voltage. Field tests measuring the output voltage of steel fiber concrete confirm the model’s accuracy. Results show that steel fiber concrete achieves the highest output voltage, followed by ordinary and bamboo fiber concrete. Among influencing factors, ambient temperature has the most significant impact on output voltage, ranked as ambient temperature > wind speed > aluminum plate embedding depth. Over time, the influence of embedding depth on output voltage lessens. When the temperature difference across the thermoelectric module reaches 54.6 °C, the system generates an output voltage of 1.09 V, meeting low-power generation requirements. This research aims to reduce pavement temperatures, preventing damage to pavement structures from high temperatures, while harnessing the temperature difference between concrete pavement and air to generate clean energy. This approach meets the power demands of road systems and lays a solid foundation for integrating energy generation with construction.","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"5 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enbuild.2024.115159","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an innovative design for a concrete-based energy harvesting system, focusing on ordinary concrete, steel fiber concrete, and bamboo fiber concrete to identify the most effective material for power generation and efficiency improvement. The temperature transfer characteristics and output voltage of each concrete type are examined in detail. Simulation analyses assess how ambient temperature, wind speed, and the embedding depth of conductive aluminum plates affect the system’s temperature field and output voltage. Field tests measuring the output voltage of steel fiber concrete confirm the model’s accuracy. Results show that steel fiber concrete achieves the highest output voltage, followed by ordinary and bamboo fiber concrete. Among influencing factors, ambient temperature has the most significant impact on output voltage, ranked as ambient temperature > wind speed > aluminum plate embedding depth. Over time, the influence of embedding depth on output voltage lessens. When the temperature difference across the thermoelectric module reaches 54.6 °C, the system generates an output voltage of 1.09 V, meeting low-power generation requirements. This research aims to reduce pavement temperatures, preventing damage to pavement structures from high temperatures, while harnessing the temperature difference between concrete pavement and air to generate clean energy. This approach meets the power demands of road systems and lays a solid foundation for integrating energy generation with construction.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.