Thermoelectric power generation in concrete: A study on influential material and structural factors

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yong Luo, Hai Liu
{"title":"Thermoelectric power generation in concrete: A study on influential material and structural factors","authors":"Yong Luo, Hai Liu","doi":"10.1016/j.enbuild.2024.115159","DOIUrl":null,"url":null,"abstract":"This study presents an innovative design for a concrete-based energy harvesting system, focusing on ordinary concrete, steel fiber concrete, and bamboo fiber concrete to identify the most effective material for power generation and efficiency improvement. The temperature transfer characteristics and output voltage of each concrete type are examined in detail. Simulation analyses assess how ambient temperature, wind speed, and the embedding depth of conductive aluminum plates affect the system’s temperature field and output voltage. Field tests measuring the output voltage of steel fiber concrete confirm the model’s accuracy. Results show that steel fiber concrete achieves the highest output voltage, followed by ordinary and bamboo fiber concrete. Among influencing factors, ambient temperature has the most significant impact on output voltage, ranked as ambient temperature > wind speed > aluminum plate embedding depth. Over time, the influence of embedding depth on output voltage lessens. When the temperature difference across the thermoelectric module reaches 54.6 °C, the system generates an output voltage of 1.09 V, meeting low-power generation requirements. This research aims to reduce pavement temperatures, preventing damage to pavement structures from high temperatures, while harnessing the temperature difference between concrete pavement and air to generate clean energy. This approach meets the power demands of road systems and lays a solid foundation for integrating energy generation with construction.","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"5 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enbuild.2024.115159","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an innovative design for a concrete-based energy harvesting system, focusing on ordinary concrete, steel fiber concrete, and bamboo fiber concrete to identify the most effective material for power generation and efficiency improvement. The temperature transfer characteristics and output voltage of each concrete type are examined in detail. Simulation analyses assess how ambient temperature, wind speed, and the embedding depth of conductive aluminum plates affect the system’s temperature field and output voltage. Field tests measuring the output voltage of steel fiber concrete confirm the model’s accuracy. Results show that steel fiber concrete achieves the highest output voltage, followed by ordinary and bamboo fiber concrete. Among influencing factors, ambient temperature has the most significant impact on output voltage, ranked as ambient temperature > wind speed > aluminum plate embedding depth. Over time, the influence of embedding depth on output voltage lessens. When the temperature difference across the thermoelectric module reaches 54.6 °C, the system generates an output voltage of 1.09 V, meeting low-power generation requirements. This research aims to reduce pavement temperatures, preventing damage to pavement structures from high temperatures, while harnessing the temperature difference between concrete pavement and air to generate clean energy. This approach meets the power demands of road systems and lays a solid foundation for integrating energy generation with construction.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信