Long-Term field testing of the accuracy and HVAC energy savings potential of occupancy presence sensors in A Single-Family home

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Zhihong Pang, Mingyue Guo, Zheng O’Neill, Blake Smith-Cortez, Zhiyao Yang, Mingzhe Liu, Bing Dong
{"title":"Long-Term field testing of the accuracy and HVAC energy savings potential of occupancy presence sensors in A Single-Family home","authors":"Zhihong Pang, Mingyue Guo, Zheng O’Neill, Blake Smith-Cortez, Zhiyao Yang, Mingzhe Liu, Bing Dong","doi":"10.1016/j.enbuild.2024.115161","DOIUrl":null,"url":null,"abstract":"The energy-saving potential of occupancy-centric smart thermostats has been extensively explored in simulations but lacked field testing for energy savings quantification and sensor performance assessment in real buildings. This paper presents a long-term field study conducted in a single-family home in Texas, U.S. to evaluate the performance of occupancy-centric controls (OCC) of HVAC (heating, ventilation, and air-conditioning) system in terms of energy savings, sensor accuracy, and impact on electric peak demand. The test site was equipped with a commercial off-the-shelf (COTS) smart thermostat and multiple occupancy presence sensors for OCC implementation. Additionally, a sub-metering system was installed to monitor electricity consumption of various end-use equipment, including the HVAC system. A supplementary device was installed to track the ground-truth occupancy for the accuracy evaluation of the occupancy presence sensor. Scenarios of baseline and OCC controls were alternated weekly over the 20-month testing period. The results indicated an effective OCC execution, as evidenced by indoor temperature profiles. During the 2023 cooling season, OCC achieved total energy savings of 1,958 kWh, corresponding to a 17.6% energy savings ratio. Under certain conditions, daily HVAC energy savings reached as high as 17 kWh, with a savings ratio of 35%. Sensor performance showed an overall accuracy of 83.8%, a False Positive Rate (FPR) of 12.8%, and a False Negative Rate (FNR) of 47.4%. A key limitation was the sensor’s inability to detect stationary occupants during sleep, leading to a midnight FNR of nearly 100% and significantly compromising thermal comfort. Additionally, the implementation of OCC resulted in extended periods of high electricity demand on summer afternoons, affecting occupant’s thermal comfort and posing potential challenges to community-level grid operations if OCC were widely adopted. This study addresses a critical research gap by empirically investigating energy-saving potential and occupancy sensor performance in residential buildings. Through a comprehensive field-testing study, the research examines the interrelationship between sensor accuracy, energy savings, and thermal comfort, an area that has received limited attention in the current literature.","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"238 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enbuild.2024.115161","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The energy-saving potential of occupancy-centric smart thermostats has been extensively explored in simulations but lacked field testing for energy savings quantification and sensor performance assessment in real buildings. This paper presents a long-term field study conducted in a single-family home in Texas, U.S. to evaluate the performance of occupancy-centric controls (OCC) of HVAC (heating, ventilation, and air-conditioning) system in terms of energy savings, sensor accuracy, and impact on electric peak demand. The test site was equipped with a commercial off-the-shelf (COTS) smart thermostat and multiple occupancy presence sensors for OCC implementation. Additionally, a sub-metering system was installed to monitor electricity consumption of various end-use equipment, including the HVAC system. A supplementary device was installed to track the ground-truth occupancy for the accuracy evaluation of the occupancy presence sensor. Scenarios of baseline and OCC controls were alternated weekly over the 20-month testing period. The results indicated an effective OCC execution, as evidenced by indoor temperature profiles. During the 2023 cooling season, OCC achieved total energy savings of 1,958 kWh, corresponding to a 17.6% energy savings ratio. Under certain conditions, daily HVAC energy savings reached as high as 17 kWh, with a savings ratio of 35%. Sensor performance showed an overall accuracy of 83.8%, a False Positive Rate (FPR) of 12.8%, and a False Negative Rate (FNR) of 47.4%. A key limitation was the sensor’s inability to detect stationary occupants during sleep, leading to a midnight FNR of nearly 100% and significantly compromising thermal comfort. Additionally, the implementation of OCC resulted in extended periods of high electricity demand on summer afternoons, affecting occupant’s thermal comfort and posing potential challenges to community-level grid operations if OCC were widely adopted. This study addresses a critical research gap by empirically investigating energy-saving potential and occupancy sensor performance in residential buildings. Through a comprehensive field-testing study, the research examines the interrelationship between sensor accuracy, energy savings, and thermal comfort, an area that has received limited attention in the current literature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信