Tanja Ruthsatz, Sandra Wymann, Elena Velkoska, Mariam Mansour, Daniel Schu, Marit Lichtfuss, Paolo Rossato, Meaghan FitzPatrick, Sarah Hosback, Allison Dyson, Eva Herzog, Kirstee Martin, Barbara Dietrich, Matthew P Hardy
{"title":"Preclinical safety and efficacy of the recombinant CR1 drug product CSL040 in rats and cynomolgus monkeys.","authors":"Tanja Ruthsatz, Sandra Wymann, Elena Velkoska, Mariam Mansour, Daniel Schu, Marit Lichtfuss, Paolo Rossato, Meaghan FitzPatrick, Sarah Hosback, Allison Dyson, Eva Herzog, Kirstee Martin, Barbara Dietrich, Matthew P Hardy","doi":"10.1016/j.taap.2024.117191","DOIUrl":null,"url":null,"abstract":"<p><p>CSL040 is a soluble, recombinant fragment of the complement receptor 1 (CR1) extracellular domain that acts as an inhibitor of all three pathways of the complement system. Systemic toxicity, toxicokinetics (TK), and pharmacodynamics (PD) of CSL040 were assessed in two-week intravenous (IV) bolus studies in Han Wistar rats and cynomolgus monkeys. Recovery from any effects was evaluated during a four-week recovery period. Daily repeat-dose administration for 2 weeks at doses of up to 500 mg/kg CSL040 IV was well tolerated in rats and cynomolgus monkeys, leading to a no observed adverse effect level (NOAEL) of 500 mg/kg for both species. Safety pharmacology parameters such as electrophysiology of the heart, blood pressure, heart rate, and respiratory rate measurements, and general toxicological readouts were considered unaffected by CSL040 treatment. Anti-drug antibodies (ADAs) were observed in all cynomolgus monkeys and in some rats at the highest dose of CSL040, but with no effect on pharmacokinetics (PK), supportive of adequate exposure levels as required for a safety assessment. All three complement pathways were inhibited dose-dependently by CSL040. Additionally, no effect on cytokine levels by CSL040 was detected in vitro using a cytokine release assay. These non-clinical studies with CSL040 demonstrated PD activity consistent with its mode of action, adequate PK properties, and a safety profile supporting a phase 1 clinical strategy. A small follow-up study comparing the PK/PD effects of CSL040 following IV and subcutaneous (SC) administration also suggested that the latter route of administration might be a viable alternative to IV administration.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":" ","pages":"117191"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117191","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
CSL040 is a soluble, recombinant fragment of the complement receptor 1 (CR1) extracellular domain that acts as an inhibitor of all three pathways of the complement system. Systemic toxicity, toxicokinetics (TK), and pharmacodynamics (PD) of CSL040 were assessed in two-week intravenous (IV) bolus studies in Han Wistar rats and cynomolgus monkeys. Recovery from any effects was evaluated during a four-week recovery period. Daily repeat-dose administration for 2 weeks at doses of up to 500 mg/kg CSL040 IV was well tolerated in rats and cynomolgus monkeys, leading to a no observed adverse effect level (NOAEL) of 500 mg/kg for both species. Safety pharmacology parameters such as electrophysiology of the heart, blood pressure, heart rate, and respiratory rate measurements, and general toxicological readouts were considered unaffected by CSL040 treatment. Anti-drug antibodies (ADAs) were observed in all cynomolgus monkeys and in some rats at the highest dose of CSL040, but with no effect on pharmacokinetics (PK), supportive of adequate exposure levels as required for a safety assessment. All three complement pathways were inhibited dose-dependently by CSL040. Additionally, no effect on cytokine levels by CSL040 was detected in vitro using a cytokine release assay. These non-clinical studies with CSL040 demonstrated PD activity consistent with its mode of action, adequate PK properties, and a safety profile supporting a phase 1 clinical strategy. A small follow-up study comparing the PK/PD effects of CSL040 following IV and subcutaneous (SC) administration also suggested that the latter route of administration might be a viable alternative to IV administration.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.