Asphaltenes biodegradation from heavy crude oils by the yeast Yarrowia lipolytica.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Filipe Smith Buarque, Júlio Cesar Soares Sales, Lívia Cabral Lobo, Erika Christina Ashton Nunes Chrisman, Bernardo Dias Ribeiro, Maria Alice Zarur Coelho
{"title":"Asphaltenes biodegradation from heavy crude oils by the yeast Yarrowia lipolytica.","authors":"Filipe Smith Buarque, Júlio Cesar Soares Sales, Lívia Cabral Lobo, Erika Christina Ashton Nunes Chrisman, Bernardo Dias Ribeiro, Maria Alice Zarur Coelho","doi":"10.1007/s00449-024-03114-0","DOIUrl":null,"url":null,"abstract":"<p><p>Heavy crude oil reserves are characterized by their high viscosity and density, largely due to significant quantities of asphaltenes. The removal of asphaltene precipitates from oil industry installations is crucial, as they can contaminate catalysts and obstruct pipelines. Therefore, this study aimed to bio-transform heavy oil asphaltenes into smaller molecules using the yeast Yarrowia lipolytica, known for its ability to efficiently degrade hydrophobic substrates. For this purpose, asphaltenes were extracted from crude oil samples, and yeast growth was assessed in a mineral medium containing 2, 5, or 10 g L<sup>-1</sup> of asphaltenes. After 168 h of incubation, liquid-liquid extraction was conducted on samples from the Yarrowia lipolytica growth medium using chloroform. The extracted fractions were then quantified by gas chromatography. The results indicated that the yeast could utilize the asphaltenes as a carbon source for growth, though there was a delay in growth compared to the control (glucose as the carbon source), with a maximum biomass concentration of 2.26 g L<sup>-1</sup> achieved at 144 h. From the experimental design, it was determined that a higher concentration of aromatic compounds was achieved under the conditions of 115 rpm, 2 g L<sup>-1</sup> of asphaltenes, and 0.5 g L<sup>-1</sup> of cell inoculum. Conversely, to obtain a higher concentration of saturated compounds, the optimal conditions were 160 rpm, 5 g L<sup>-1</sup> of asphaltenes, and 1.0 g L<sup>-1</sup> of cell inoculum. Molecular docking results indicated that asphaltenes have a high affinity for cytochrome P450, laccase, and Lip2, with interactions observed with their catalytic triads, suggesting a significant role for these enzymes in asphaltene bioconversion.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03114-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy crude oil reserves are characterized by their high viscosity and density, largely due to significant quantities of asphaltenes. The removal of asphaltene precipitates from oil industry installations is crucial, as they can contaminate catalysts and obstruct pipelines. Therefore, this study aimed to bio-transform heavy oil asphaltenes into smaller molecules using the yeast Yarrowia lipolytica, known for its ability to efficiently degrade hydrophobic substrates. For this purpose, asphaltenes were extracted from crude oil samples, and yeast growth was assessed in a mineral medium containing 2, 5, or 10 g L-1 of asphaltenes. After 168 h of incubation, liquid-liquid extraction was conducted on samples from the Yarrowia lipolytica growth medium using chloroform. The extracted fractions were then quantified by gas chromatography. The results indicated that the yeast could utilize the asphaltenes as a carbon source for growth, though there was a delay in growth compared to the control (glucose as the carbon source), with a maximum biomass concentration of 2.26 g L-1 achieved at 144 h. From the experimental design, it was determined that a higher concentration of aromatic compounds was achieved under the conditions of 115 rpm, 2 g L-1 of asphaltenes, and 0.5 g L-1 of cell inoculum. Conversely, to obtain a higher concentration of saturated compounds, the optimal conditions were 160 rpm, 5 g L-1 of asphaltenes, and 1.0 g L-1 of cell inoculum. Molecular docking results indicated that asphaltenes have a high affinity for cytochrome P450, laccase, and Lip2, with interactions observed with their catalytic triads, suggesting a significant role for these enzymes in asphaltene bioconversion.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信