Unveiling the neuroprotective impact of virgin olive oil ingestion via the microbiota–gut–brain axis

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2024-11-26 DOI:10.1039/D4FO04560B
Luna Barrera-Chamorro, Africa Fernandez-Prior, Carmen M. Claro-Cala, Jose L. del Rio-Vazquez, Fernando Rivero-Pino and Sergio Montserrat-de la Paz
{"title":"Unveiling the neuroprotective impact of virgin olive oil ingestion via the microbiota–gut–brain axis","authors":"Luna Barrera-Chamorro, Africa Fernandez-Prior, Carmen M. Claro-Cala, Jose L. del Rio-Vazquez, Fernando Rivero-Pino and Sergio Montserrat-de la Paz","doi":"10.1039/D4FO04560B","DOIUrl":null,"url":null,"abstract":"<p >The gut–brain axis, a complex system of two-way communication between both organs, plays a key role in overall health. This comprehensive review explores the possible neuromodulatory effects upon consumption of virgin olive oil (VOO) <em>via</em> changes in the gut microbiota. The components found in VOO, such as polyphenols and monounsaturated fatty acids, and their function in influencing the composition of the gut microbiota, focusing on those known to possess neuroactive characteristics, based on a thorough analysis of the literature were investigated. Studies suggest that these compounds, such as hydroxytyrosol and ferulic acid, may protect against neuronal death and inhibit amyloid-β plaques (Aβ) formation. Furthermore, preclinical and clinical research indicates that VOO may promote the growth of beneficial bacteria, such as <em>Lactobacillus</em> and <em>Bifidobacterium</em>, and increase the production of short-chain fatty acids (SCFAs). These changes could be related to improved cognitive function, mood regulation, and neuroprotection. However, limitations of these studies (short duration of studies, the variability in VOO composition and the lack of standardized methodologies) need to be overcome. Furthermore, the limited number of human trials and incomplete understanding of the gut–brain axis make it difficult to establish causality and clinical application of the findings. For this reason, future research should focus on long-term clinical trials with larger cohorts, standardised characterisation of VOO and on exploring the synergistic effects with other dietary components. Furthermore, mechanistic studies should aim to uncover the molecular pathways involved in the gut–brain axis to develop specific dietary interventions for neurological and neurodegenerative disorders.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" 1","pages":" 24-39"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/fo/d4fo04560b","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The gut–brain axis, a complex system of two-way communication between both organs, plays a key role in overall health. This comprehensive review explores the possible neuromodulatory effects upon consumption of virgin olive oil (VOO) via changes in the gut microbiota. The components found in VOO, such as polyphenols and monounsaturated fatty acids, and their function in influencing the composition of the gut microbiota, focusing on those known to possess neuroactive characteristics, based on a thorough analysis of the literature were investigated. Studies suggest that these compounds, such as hydroxytyrosol and ferulic acid, may protect against neuronal death and inhibit amyloid-β plaques (Aβ) formation. Furthermore, preclinical and clinical research indicates that VOO may promote the growth of beneficial bacteria, such as Lactobacillus and Bifidobacterium, and increase the production of short-chain fatty acids (SCFAs). These changes could be related to improved cognitive function, mood regulation, and neuroprotection. However, limitations of these studies (short duration of studies, the variability in VOO composition and the lack of standardized methodologies) need to be overcome. Furthermore, the limited number of human trials and incomplete understanding of the gut–brain axis make it difficult to establish causality and clinical application of the findings. For this reason, future research should focus on long-term clinical trials with larger cohorts, standardised characterisation of VOO and on exploring the synergistic effects with other dietary components. Furthermore, mechanistic studies should aim to uncover the molecular pathways involved in the gut–brain axis to develop specific dietary interventions for neurological and neurodegenerative disorders.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信