Qi Zhou, Kaijia Zhang, Yaorong Su, Xinhe Wu, Kai Wang, Guohong Wang
{"title":"2D/1D CaIn2S4/TiO2 S-scheme heterojunction: In-situ hydrothermal synthesis and enhanced photocatalytic H2 evolution","authors":"Qi Zhou, Kaijia Zhang, Yaorong Su, Xinhe Wu, Kai Wang, Guohong Wang","doi":"10.1016/j.jmat.2024.100987","DOIUrl":null,"url":null,"abstract":"Constructing S-scheme heterojunction between TiO<sub>2</sub> and other reduction semiconductors can effectively enhance the intrinsically low carrier separation efficiency and increase the reduction ability of single TiO<sub>2</sub> photocatalyst. In this work, a hydrothermally synthesized 2D CaIn<sub>2</sub>S<sub>4</sub> nanosheets, possessing the merits of narrow bandgap and strong reduction ability, have been developed to construct S-scheme heterojunction with TiO<sub>2</sub> nanofiber. It is found that the 2D CaIn<sub>2</sub>S<sub>4</sub> nanosheets can be <em>in-situ</em> assembled onto the surface of 1D TiO<sub>2</sub> nanofiber to form a 2D/1D CaIn<sub>2</sub>S<sub>4</sub>/TiO<sub>2</sub> S-scheme heterojunction, which then presents an extremely reinforced H<sub>2</sub>-evolution rate (ca. 564.66 μmol·g<sup>–1</sup>·h<sup>–1</sup>), about 3- and 7-fold higher than that of the single TiO<sub>2</sub> and CaIn<sub>2</sub>S<sub>4</sub>, respectively. Finally, the <em>in-situ</em> XPS, DFT calculations, steady and transient-state spectrum results indicate that the formation of S-scheme heterojunctions between CaIn<sub>2</sub>S<sub>4</sub> and TiO<sub>2</sub>. This work may deliver a novel and insightful inspiration for the development of high-efficiency S-scheme heterojunction photocatalysts.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"92 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100987","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Constructing S-scheme heterojunction between TiO2 and other reduction semiconductors can effectively enhance the intrinsically low carrier separation efficiency and increase the reduction ability of single TiO2 photocatalyst. In this work, a hydrothermally synthesized 2D CaIn2S4 nanosheets, possessing the merits of narrow bandgap and strong reduction ability, have been developed to construct S-scheme heterojunction with TiO2 nanofiber. It is found that the 2D CaIn2S4 nanosheets can be in-situ assembled onto the surface of 1D TiO2 nanofiber to form a 2D/1D CaIn2S4/TiO2 S-scheme heterojunction, which then presents an extremely reinforced H2-evolution rate (ca. 564.66 μmol·g–1·h–1), about 3- and 7-fold higher than that of the single TiO2 and CaIn2S4, respectively. Finally, the in-situ XPS, DFT calculations, steady and transient-state spectrum results indicate that the formation of S-scheme heterojunctions between CaIn2S4 and TiO2. This work may deliver a novel and insightful inspiration for the development of high-efficiency S-scheme heterojunction photocatalysts.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.