The intricate brain-heart connection: The relationship between heart rate variability and cognitive functioning.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Neuroscience Pub Date : 2025-01-26 Epub Date: 2024-12-05 DOI:10.1016/j.neuroscience.2024.12.004
Giuseppe Forte, Maria Casagrande
{"title":"The intricate brain-heart connection: The relationship between heart rate variability and cognitive functioning.","authors":"Giuseppe Forte, Maria Casagrande","doi":"10.1016/j.neuroscience.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>In the last years, there has been a growing interest in the brain-heart connection. A core aspect of this connection appears to be the autonomic nervous system, particularly through the vagus nerve. Accordingly, vagally mediated heart rate variability (vmHRV) is currently considered as an index of top-down control processes involved in cognition and emotion regulation. Recent evidence indicates that higher vmHRV is associated with enhanced cognitive performance across multiple domains, such as executive functions, memory, attention, and language skills. From this premises, this study examined the relationship between cardiac vagal tone, as indicated by heart rate variability (vmHRV), and cognitive functions. A sample of 143 healthy young adults completed a comprehensive neuropsychological battery. The results revealed a strong correlation between resting vmHRV and cognitive functions, particularly in executive processes. Participants with higher resting vagal tone showed superior cognitive performance in tasks requiring cognitive control, motor and cognitive inhibition, cognitive flexibility, and working memory in comparison to those with lower resting vagal tone. Furthermore, vagal-mediated heart rate variability was also found to be associated with memory, attention, and executive performance. The current research provides new insights into the interactions between cognitive and autonomic systems, further supporting evidence for body-brain interactions.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"369-376"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In the last years, there has been a growing interest in the brain-heart connection. A core aspect of this connection appears to be the autonomic nervous system, particularly through the vagus nerve. Accordingly, vagally mediated heart rate variability (vmHRV) is currently considered as an index of top-down control processes involved in cognition and emotion regulation. Recent evidence indicates that higher vmHRV is associated with enhanced cognitive performance across multiple domains, such as executive functions, memory, attention, and language skills. From this premises, this study examined the relationship between cardiac vagal tone, as indicated by heart rate variability (vmHRV), and cognitive functions. A sample of 143 healthy young adults completed a comprehensive neuropsychological battery. The results revealed a strong correlation between resting vmHRV and cognitive functions, particularly in executive processes. Participants with higher resting vagal tone showed superior cognitive performance in tasks requiring cognitive control, motor and cognitive inhibition, cognitive flexibility, and working memory in comparison to those with lower resting vagal tone. Furthermore, vagal-mediated heart rate variability was also found to be associated with memory, attention, and executive performance. The current research provides new insights into the interactions between cognitive and autonomic systems, further supporting evidence for body-brain interactions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信