{"title":"The synergy of ACC deaminase producing plant growth-promoting microbes provide drought tolerance in Ocimum basilicum L. cv. “Saumya”","authors":"Suman Singh , Shiv Shanker Pandey , Chandan Singh Chanotiya , Deepti Barnawal , Poornima Vajpayee , Alok Kalra","doi":"10.1016/j.scienta.2024.113810","DOIUrl":null,"url":null,"abstract":"<div><div>The use of plant growth-promoting microorganisms is an effective agricultural practice to improve plant growth, especially under abiotic stress. In this study, the combined impact of three plant growth-promoting bacteria (PGPB) namely <em>Brevibacterium halotolerans</em> (Sd-6), <em>Burkholderia cepacia</em> (Art-7), <em>Bacillus subtilis</em> (Ldr-2) were tested with <em>Trichoderma harzianum</em> (Th) (possessing ACC deaminase producing activity) in <em>Ocimum basilicum</em> L. cv. “Saumya” to reduce drought-induced damages to the plants under different level of drought stress [i.e. well-watered (100 %), moderate (60 %), severe (40 %)]. These PGPB strains, along with Th, were found to be tolerant against osmotic stress when tested in growth media containing different concentrations of polyethylene glycol (PEG 8000), and all were found to endure -0.99 MPa water potential. Compared to non-inoculated control, Th+Ldr-2 treatment improved fresh herb weight (62.45 %) and oil content (61.54 %) and higher photosynthetic rate under severe drought. Besides, in relation to control, the above treatment enhanced nutrient uptake, reduced ABA, ACC as well as ethylene levels and increased IAA content in addition to an increase in important constituents of essential oil, indicating better performance in terms of plant growth under drought. Higher RWC, decreased MDA, and reduced antioxidant activities in Th+Ldr-2 treated plants compared to non-inoculated control under drought support the mechanism of the microbes providing tolerance against drought. Colony forming unit of microbes and scanning electron microscopy (SEM) study support the effective colonisation behaviour of Th+Ldr-2, which protects plants against drought stress. A consortium of diverse microbes, found to improve plant growth under drought through increased nutrient uptake, reducing the levels of ACC and ABA, improving the content of IAA, antioxidant enzymes probably reducing the effect of drought stress and improving plant biomass could be a useful tool to reduce drought-induced losses in crop plants.</div></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"339 ","pages":"Article 113810"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423824009634","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The use of plant growth-promoting microorganisms is an effective agricultural practice to improve plant growth, especially under abiotic stress. In this study, the combined impact of three plant growth-promoting bacteria (PGPB) namely Brevibacterium halotolerans (Sd-6), Burkholderia cepacia (Art-7), Bacillus subtilis (Ldr-2) were tested with Trichoderma harzianum (Th) (possessing ACC deaminase producing activity) in Ocimum basilicum L. cv. “Saumya” to reduce drought-induced damages to the plants under different level of drought stress [i.e. well-watered (100 %), moderate (60 %), severe (40 %)]. These PGPB strains, along with Th, were found to be tolerant against osmotic stress when tested in growth media containing different concentrations of polyethylene glycol (PEG 8000), and all were found to endure -0.99 MPa water potential. Compared to non-inoculated control, Th+Ldr-2 treatment improved fresh herb weight (62.45 %) and oil content (61.54 %) and higher photosynthetic rate under severe drought. Besides, in relation to control, the above treatment enhanced nutrient uptake, reduced ABA, ACC as well as ethylene levels and increased IAA content in addition to an increase in important constituents of essential oil, indicating better performance in terms of plant growth under drought. Higher RWC, decreased MDA, and reduced antioxidant activities in Th+Ldr-2 treated plants compared to non-inoculated control under drought support the mechanism of the microbes providing tolerance against drought. Colony forming unit of microbes and scanning electron microscopy (SEM) study support the effective colonisation behaviour of Th+Ldr-2, which protects plants against drought stress. A consortium of diverse microbes, found to improve plant growth under drought through increased nutrient uptake, reducing the levels of ACC and ABA, improving the content of IAA, antioxidant enzymes probably reducing the effect of drought stress and improving plant biomass could be a useful tool to reduce drought-induced losses in crop plants.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.