Calibration of MAJIS (Moons And Jupiter Imaging Spectrometer). I. On-ground setup description and characterization.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Mathieu Vincendon, Pierre Guiot, Benoît Lecomte, Mathieu Condamin, François Poulet, Antoine Arondel, Julien Barbay, John Carter, Simone De Angelis, Cydalise Dumesnil, Gianrico Filacchione, Paolo Haffoud, Jérémie Hansotte, Yves Langevin, Pierre-Louis Mayeur, Giuseppe Piccioni, Cédric Pilorget, Eric Quirico, Sébastien Rodriguez
{"title":"Calibration of MAJIS (Moons And Jupiter Imaging Spectrometer). I. On-ground setup description and characterization.","authors":"Mathieu Vincendon, Pierre Guiot, Benoît Lecomte, Mathieu Condamin, François Poulet, Antoine Arondel, Julien Barbay, John Carter, Simone De Angelis, Cydalise Dumesnil, Gianrico Filacchione, Paolo Haffoud, Jérémie Hansotte, Yves Langevin, Pierre-Louis Mayeur, Giuseppe Piccioni, Cédric Pilorget, Eric Quirico, Sébastien Rodriguez","doi":"10.1063/5.0226567","DOIUrl":null,"url":null,"abstract":"<p><p>The visible and infrared Moon And Jupiter Imaging Spectrometer (MAJIS), aboard the JUpiter ICy Moons Explorer (JUICE) spacecraft, will characterize the composition of the surfaces and atmospheres of the Jupiter system. Prior to the launch, a campaign was carried out to obtain the measurements needed to calibrate the instrument. The aim was not only to produce data for the calculation of the radiometric, spectral, and spatial transfer functions but also to evaluate MAJIS performance, such as signal-to-noise ratio and amount of straylight, under near-flight conditions. Here, we first describe the setup implemented to obtain these measurements, based on five optical channels. We notably emphasize the concepts used to mitigate thermal infrared emissions generated at ambient temperatures, since the MAJIS spectral range extends up to 5.6 µm. Then, we characterize the performance of the setup by detailing the validation measurements obtained before the campaign. In particular, the radiometric, geometric, and spectral properties of the setup needed for the inversion of collected data and the calculation of the instrument's calibration functions are presented and discussed. Finally, we provide an overview of conducted measurements with MAJIS, and we discuss unforeseen events encountered during the on-ground calibration campaign.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226567","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The visible and infrared Moon And Jupiter Imaging Spectrometer (MAJIS), aboard the JUpiter ICy Moons Explorer (JUICE) spacecraft, will characterize the composition of the surfaces and atmospheres of the Jupiter system. Prior to the launch, a campaign was carried out to obtain the measurements needed to calibrate the instrument. The aim was not only to produce data for the calculation of the radiometric, spectral, and spatial transfer functions but also to evaluate MAJIS performance, such as signal-to-noise ratio and amount of straylight, under near-flight conditions. Here, we first describe the setup implemented to obtain these measurements, based on five optical channels. We notably emphasize the concepts used to mitigate thermal infrared emissions generated at ambient temperatures, since the MAJIS spectral range extends up to 5.6 µm. Then, we characterize the performance of the setup by detailing the validation measurements obtained before the campaign. In particular, the radiometric, geometric, and spectral properties of the setup needed for the inversion of collected data and the calculation of the instrument's calibration functions are presented and discussed. Finally, we provide an overview of conducted measurements with MAJIS, and we discuss unforeseen events encountered during the on-ground calibration campaign.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信