Khalid Idris Gidado, Funmilayo O Adeshakin, Lawan Rabiu, Ziyang Zhang, Guizhong Zhang, Xiaochun Wan
{"title":"Multifaceted roles of DLG3/SAP102 in neurophysiology, neurological disorders and tumorigenesis.","authors":"Khalid Idris Gidado, Funmilayo O Adeshakin, Lawan Rabiu, Ziyang Zhang, Guizhong Zhang, Xiaochun Wan","doi":"10.1016/j.neuroscience.2024.11.081","DOIUrl":null,"url":null,"abstract":"<p><p>DLG3, also known as Synapse-associated protein 102 (SAP102), is essential for the organization and plasticity of excitatory synapses within the central nervous system (CNS). It plays a critical role in clustering and moving key components necessary for learning and memory processes. Mutations in the DLG3 gene, which result in truncated SAP102 proteins, have been associated with a range of neurological disorders, including X-linked intellectual disability (XLID), autism spectrum disorders (ASD), and schizophrenia, all of which can disrupt synaptic structure and cognitive functions. Abnormal SAP102 expression has also been linked to various psychiatric and neurodegenerative conditions, such as bipolar disorder, major depression, and Alzheimer's disease. Recent studies suggest that SAP102 influences cancer development and metastasis by regulating multiple signaling pathways, including the PI3K/AKT axis and the Hippo pathway. Moreover, SAP102 has been demonstrated to regulate tumor-induced bone pain through activating NMDA receptors. These findings highlight SAP102 as a promising therapeutic target for both neurological disorders and cancer. Therefore, further investigation into the regulatory roles of SAP102 in neural development and disease may lead to novel therapeutic approaches for treating synaptic disorders and managing cancer progression.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"192-201"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.11.081","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
DLG3, also known as Synapse-associated protein 102 (SAP102), is essential for the organization and plasticity of excitatory synapses within the central nervous system (CNS). It plays a critical role in clustering and moving key components necessary for learning and memory processes. Mutations in the DLG3 gene, which result in truncated SAP102 proteins, have been associated with a range of neurological disorders, including X-linked intellectual disability (XLID), autism spectrum disorders (ASD), and schizophrenia, all of which can disrupt synaptic structure and cognitive functions. Abnormal SAP102 expression has also been linked to various psychiatric and neurodegenerative conditions, such as bipolar disorder, major depression, and Alzheimer's disease. Recent studies suggest that SAP102 influences cancer development and metastasis by regulating multiple signaling pathways, including the PI3K/AKT axis and the Hippo pathway. Moreover, SAP102 has been demonstrated to regulate tumor-induced bone pain through activating NMDA receptors. These findings highlight SAP102 as a promising therapeutic target for both neurological disorders and cancer. Therefore, further investigation into the regulatory roles of SAP102 in neural development and disease may lead to novel therapeutic approaches for treating synaptic disorders and managing cancer progression.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.