Rice bran peptides target lectin-like oxidized low-density lipoprotein receptor-1 to ameliorate atherosclerosis.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2024-12-05 DOI:10.1039/d4fo04514a
Jianfei Mu, Jiajia Li, Zhongxu Chen, Yajuan Chen, Qinlu Lin, Lingyu Zhang, Yong Fang, Ying Liang
{"title":"Rice bran peptides target lectin-like oxidized low-density lipoprotein receptor-1 to ameliorate atherosclerosis.","authors":"Jianfei Mu, Jiajia Li, Zhongxu Chen, Yajuan Chen, Qinlu Lin, Lingyu Zhang, Yong Fang, Ying Liang","doi":"10.1039/d4fo04514a","DOIUrl":null,"url":null,"abstract":"<p><p>Food-derived multifunctional peptides offer numerous health benefits through different biochemical pathways. However, their impact on aging-related atherosclerotic cardiovascular disease (ASCVD), especially atherosclerosis, remains underexplored despite cardiovascular disease (CVD) being the leading cause of death globally. In this study, NHANES data and Mendelian randomization were used to analyze the association between lipid metabolism disorders, systemic immune responses, dietary inflammatory index, and ASCVD. The results showed that they were all positively correlated with ASCVD. A dietary intervention was used to induce a mouse model of atherosclerosis through a high-fat diet (HFD). Our findings demonstrate that rice bran peptide could mitigate the typical pathological features of atherosclerosis. Molecular docking analysis further predicted that lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a key target of rice bran peptide. This prediction was validated through a two-cell model of endothelial cells and lox-1-interfered macrophages. Therefore, targeting LOX-1 with rice bran peptide inhibits the excessive uptake of oxidized LDL (ox-LDL) by macrophages, thereby hindering the mass production of foam cells, which is crucial in preventing the early onset of atherosclerosis.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo04514a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Food-derived multifunctional peptides offer numerous health benefits through different biochemical pathways. However, their impact on aging-related atherosclerotic cardiovascular disease (ASCVD), especially atherosclerosis, remains underexplored despite cardiovascular disease (CVD) being the leading cause of death globally. In this study, NHANES data and Mendelian randomization were used to analyze the association between lipid metabolism disorders, systemic immune responses, dietary inflammatory index, and ASCVD. The results showed that they were all positively correlated with ASCVD. A dietary intervention was used to induce a mouse model of atherosclerosis through a high-fat diet (HFD). Our findings demonstrate that rice bran peptide could mitigate the typical pathological features of atherosclerosis. Molecular docking analysis further predicted that lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a key target of rice bran peptide. This prediction was validated through a two-cell model of endothelial cells and lox-1-interfered macrophages. Therefore, targeting LOX-1 with rice bran peptide inhibits the excessive uptake of oxidized LDL (ox-LDL) by macrophages, thereby hindering the mass production of foam cells, which is crucial in preventing the early onset of atherosclerosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信