Surface borate layer dramatically enhances the stability of NiFe-layered double hydroxide for alkaline seawater oxidation

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tong Li , Chaoxin Yang , Zhengwei Cai , Zixiao Li , Shengjun Sun , Xiaoyan Wang , Min Zhang , Meng Yue , Hefeng Wang , Xixi Zhang , Dongdong Zheng , Yongchao Yao , Yongsong Luo , Mohamed S. Hamdy , Fatma A. Ibrahim , Xuping Sun , Bo Tang
{"title":"Surface borate layer dramatically enhances the stability of NiFe-layered double hydroxide for alkaline seawater oxidation","authors":"Tong Li ,&nbsp;Chaoxin Yang ,&nbsp;Zhengwei Cai ,&nbsp;Zixiao Li ,&nbsp;Shengjun Sun ,&nbsp;Xiaoyan Wang ,&nbsp;Min Zhang ,&nbsp;Meng Yue ,&nbsp;Hefeng Wang ,&nbsp;Xixi Zhang ,&nbsp;Dongdong Zheng ,&nbsp;Yongchao Yao ,&nbsp;Yongsong Luo ,&nbsp;Mohamed S. Hamdy ,&nbsp;Fatma A. Ibrahim ,&nbsp;Xuping Sun ,&nbsp;Bo Tang","doi":"10.1016/j.mtphys.2024.101612","DOIUrl":null,"url":null,"abstract":"<div><div>Seawater electrolysis presents a sustainable approach for producing green hydrogen using renewable energy sources. However, chloride ions (Cl<sup>−</sup>) and their derivatives significantly reduce the durability of anode catalysts, severely hindering their practical application. In this work, we developed a borate (B<sub>i</sub>) modified NiFe layered double hydroxide on nickel foam (NiFe LDH@NiFe-B<sub>i</sub>/NF) to blocks Cl<sup>−</sup> and mitigates chlorine reactions during alkaline seawater oxidation (ASO). In situ electrochemical spectroscopic studies show that the B<sub>i</sub> layer effectively promotes NiOOH formation, thereby enhancing oxygen evolution reaction (OER) activity. Specifically, the B<sub>4</sub>O<sub>7</sub><sup>2−</sup>-rich anionic overlayer effectively prevents Cl<sup>−</sup> adsorption and thus protect the active site during ASO. As a result, NiFe LDH@NiFe-B<sub>i</sub>/NF requires a lower overpotential (<em>ƞ</em>) of 354 mV to achieve an industrial current density (<em>j</em>) of 1000 mA cm<sup>−2</sup> compared to NiFe LDH/NF, which requires 407 mV, in a 1 M KOH + seawater. Notably, NiFe LDH@NiFe-B<sub>i</sub>/NF exhibits exceptional long-term electrochemical durability, maintaining stable operation for 600 h at a <em>j</em> of 1000 mA cm<sup>−2</sup> in alkaline seawater. Additionally, membrane electrode assembly fabricated with NiFe LDH@NiFe-B<sub>i</sub>/NF requires lower <em>ƞ</em> to reach the same voltages than Pt/C/NF||RuO<sub>2</sub>/NF. Furthermore, Pt/C/NF||NiFe LDH@NiFe-B<sub>i</sub>/NF operates at 300 mA cm<sup>−2</sup> for 150 h without significant activity degradation.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101612"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002888","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater electrolysis presents a sustainable approach for producing green hydrogen using renewable energy sources. However, chloride ions (Cl) and their derivatives significantly reduce the durability of anode catalysts, severely hindering their practical application. In this work, we developed a borate (Bi) modified NiFe layered double hydroxide on nickel foam (NiFe LDH@NiFe-Bi/NF) to blocks Cl and mitigates chlorine reactions during alkaline seawater oxidation (ASO). In situ electrochemical spectroscopic studies show that the Bi layer effectively promotes NiOOH formation, thereby enhancing oxygen evolution reaction (OER) activity. Specifically, the B4O72−-rich anionic overlayer effectively prevents Cl adsorption and thus protect the active site during ASO. As a result, NiFe LDH@NiFe-Bi/NF requires a lower overpotential (ƞ) of 354 mV to achieve an industrial current density (j) of 1000 mA cm−2 compared to NiFe LDH/NF, which requires 407 mV, in a 1 M KOH + seawater. Notably, NiFe LDH@NiFe-Bi/NF exhibits exceptional long-term electrochemical durability, maintaining stable operation for 600 h at a j of 1000 mA cm−2 in alkaline seawater. Additionally, membrane electrode assembly fabricated with NiFe LDH@NiFe-Bi/NF requires lower ƞ to reach the same voltages than Pt/C/NF||RuO2/NF. Furthermore, Pt/C/NF||NiFe LDH@NiFe-Bi/NF operates at 300 mA cm−2 for 150 h without significant activity degradation.
表面硼酸盐层显著提高了nife层状双氢氧化物在碱性海水氧化中的稳定性
海水电解是一种利用可再生能源生产绿色氢的可持续方法。然而,氯离子(Cl−)及其衍生物显著降低了阳极催化剂的耐久性,严重阻碍了其实际应用。在这项工作中,我们开发了硼酸盐(Bi)修饰的NiFe泡沫镍层状双氢氧化物(NiFe LDH@NiFe-Bi/NF),以阻断Cl -并减轻碱性海水氧化(ASO)过程中的氯反应。原位电化学光谱研究表明,Bi层有效促进NiOOH的形成,从而提高析氧反应(OER)活性。具体来说,富含B4O72−的阴离子覆盖层有效地阻止了Cl−的吸附,从而保护了ASO过程中的活性位点。因此,与NiFe LDH/NF相比,NiFe LDH@NiFe-Bi/NF在1 M KOH +海水中需要407 mV的过电位()较低,达到1000 mA cm - 2的工业电流密度(j)。值得注意的是,NiFe LDH@NiFe-Bi/NF表现出优异的长期电化学耐久性,在碱性海水中,在1000 mA cm−2的j下保持600小时的稳定运行。此外,用NiFe LDH@NiFe-Bi/NF制作的膜电极组件比Pt/C/NF||RuO2/NF需要更低的电压才能达到相同的电压。此外,Pt/C/NF||NiFe LDH@NiFe-Bi/NF在300 mA cm - 2下工作150小时,活性没有明显下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信