Repeated exposure to high-dose nicotine induces prefrontal gray matter atrophy in adolescent male rats.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Xi Chen, Kehong Long, Sijie Liu, Yue Cai, Linlin Cheng, Wei Chen, Fuchun Lin, Hao Lei
{"title":"Repeated exposure to high-dose nicotine induces prefrontal gray matter atrophy in adolescent male rats.","authors":"Xi Chen, Kehong Long, Sijie Liu, Yue Cai, Linlin Cheng, Wei Chen, Fuchun Lin, Hao Lei","doi":"10.1016/j.neuroscience.2024.11.059","DOIUrl":null,"url":null,"abstract":"<p><p>Incidences of seizure after e-cigarette use in adolescents and young adults have been reported, raising the concern about the risk of nicotine overconsumption. Few previous studies have investigated the effects of nicotine at high doses on brain and behavior in adolescent animals. In this study, the effects of a 15-day repeated nicotine treatment at a daily dose of 2 mg/kg body weight were investigated in adolescent and adult male rats. Nicotine treatment abolished body weight gain in the adults, but did not affect the body weight significantly in the adolescents. Only the nicotine-treated adolescents showed significant changes in brain anatomy 1 day post-treatment, which manifested as a significant reduction of whole-brain gray matter (GM) volume, a further reduction of regional GM volume in the medial prefrontal cortex (mPFC) and altered GM volume covariations between the mPFC and a number of brain regions. The mPFC of nicotine-treated adolescent rats did not exhibit evident signs of neuronal degeneration and reactive astrocytosis, but showed a significantly decreased expression of presynaptic marker synaptophysin (SYN), along with a significantly increased oxidative stress and a significantly elevated expressions of microglial marker ionized calcium binding adaptor molecule 1 (IBA1). Together, these results suggested that repeated nicotine overdosing may shift regional redox, modulate microglia-mediated pruning, and give rise to structural/connectivity deficits in the mPFC of adolescent male rats.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.11.059","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Incidences of seizure after e-cigarette use in adolescents and young adults have been reported, raising the concern about the risk of nicotine overconsumption. Few previous studies have investigated the effects of nicotine at high doses on brain and behavior in adolescent animals. In this study, the effects of a 15-day repeated nicotine treatment at a daily dose of 2 mg/kg body weight were investigated in adolescent and adult male rats. Nicotine treatment abolished body weight gain in the adults, but did not affect the body weight significantly in the adolescents. Only the nicotine-treated adolescents showed significant changes in brain anatomy 1 day post-treatment, which manifested as a significant reduction of whole-brain gray matter (GM) volume, a further reduction of regional GM volume in the medial prefrontal cortex (mPFC) and altered GM volume covariations between the mPFC and a number of brain regions. The mPFC of nicotine-treated adolescent rats did not exhibit evident signs of neuronal degeneration and reactive astrocytosis, but showed a significantly decreased expression of presynaptic marker synaptophysin (SYN), along with a significantly increased oxidative stress and a significantly elevated expressions of microglial marker ionized calcium binding adaptor molecule 1 (IBA1). Together, these results suggested that repeated nicotine overdosing may shift regional redox, modulate microglia-mediated pruning, and give rise to structural/connectivity deficits in the mPFC of adolescent male rats.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信